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Quantum correlations and energy currents across three dissipative oscillators
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We present a study that addresses both the stationary properties of the energy current and quantum correlations
in a three-mode chain subjected to Ohmic and super-Ohmic dissipations. An extensive numerical analysis shows
that the mean value and the fluctuations of the energy current remain insensitive to the emergence of a rich variety
of quantum correlations, such as two-mode discord and entanglement and bipartite three-mode and genuine
tripartite entanglement. The discussion of the numerical results is based on the derived expressions for the
stationary properties in terms of the two-time correlation functions of the oscillator operators, which carry the
quantum correlations. Interestingly, we show that quantum discord can be enhanced by considering both initially
squeezed thermal bath states and imposing temperature gradients.
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I. INTRODUCTION

Entanglement is one of the most striking phenomena
in quantum physics. Composite systems exhibiting genuine
quantum correlations defies our intuition, in the sense that they
are not interpreted by classical or semiclassical means [1,2].
Quantum correlations are at the heart of many quantum
information tasks, such as quantum teleportation and quantum
communication, as well as at the core of a variety of many-body
physics phenomena [3]. Quantum thermodynamics seeks the
understanding of the emergence of thermodynamics laws
from those of quantum dynamics [4,5]. In this sense, one
may wonder about the role of quantum correlations and
coherence in different phenomena of interest in quantum
thermodynamics, for instance, in the thermodynamics of
quantum thermal machines [4–13] or, more generally, in
thermal nonequilibrium systems [14].

Quantum correlations have different fates depending on
the environmental influence [15,16]. Although entanglement
is fragile with respect to thermal fluctuations and decoher-
ence, stationary entanglement still could remain in a system
subjected to dissipation [17–20]. Quantum discord [21–23], on
the other hand, seems more stable to environmental noise [24].
Recently, efforts have been made to study how dissipation may
precisely drive the system onto preferred states, e.g., onto a
genuine entangled state [25,26], by engineering the interaction
with environments [18,27–29].

According to the nonequilibrium theory, the analysis of
the (linear) response of many-body systems to macroscopic
thermodynamic forces, such as those induced by temperature
or chemical potential gradients, and to (weak) external fields
provides an opportunity to test some predictions from con-
densed matter theory and statistical physics. As an illustration,
multipartite entanglement in spin chains has been explored
through precise measurements of the magnetic susceptibil-
ity [30,31] and the heat capacity [32]. Also theoretical studies
of these two magnitudes seem to provide observable signatures
of entanglement in spin chains at thermal equilibrium [33,34].
Nowadays, the energy transport through systems involving
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spatial continuous variables, such as chains of trapped ions,
can be experimentally measured [35].

Given the increasing interest in systems under nonequilib-
rium thermal conditions in the quantum regime [24,36–43],
one may naturally ask whether the stationary response of a
system to a temperature gradient may be influenced by the
presence of pure quantum correlations and in particular by
genuine multipartite entanglement. The present work tries
to elucidate whether the average properties of the stationary
energy current across a harmonic chain, such the mean values
and fluctuations, are sensitive to the presence of two-mode
and genuine tripartite entanglement in the system and, more
generically, to quantum correlations as measured by discord.
Significant advances in the context of quantum spin networks
indicate that the presence of bipartite entanglement does not
play an important role on excitation transport [44], whereas a
strong correlation between quantum coherence and transport
efficiency can be present [45]. Although quantum correlations
tend to disappear in systems subjected to a temperature
gradient, it has been shown that entanglement and discord
can still survive in systems under such conditions [24,42].
Much less is known about the influence of genuine multipartite
entanglement and the structure of discord on the stationary
energy current in strongly dissipated harmonic chains at
low temperatures. This work focuses on stationary quantum
correlations in a continuous-variable system within such
domain and analyzes their possible relation to nonequilibrium
conditions.

We consider an open model system composed of a linear
arrange of three harmonic oscillators, each of them interacting
with its own independent heat bath. We assume that the
heat baths are in an initial squeezed thermal state [46]. This
setup is particularly interesting in the study of the genera-
tion of entanglement between distant modes of a quantum
network [47] and as a convenient model to analyze many
issues concerning the quantum thermodynamics of continuous
variable systems [4]. We employ the open-system formalism
based on the generalized Langevin equation (GLE) [48–50]
to carry out an extensive numerical study of the stationary
properties. We focus on the two- and three-mode entangle-
ments and the discord in the presence of an energy current
through the harmonic chain, for a large range of system
parameters. We will analyze whether the average and the
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fluctuations of the energy current exhibit any evidence of the
quantum correlations emerging under nonequilibrium thermal
conditions.

The paper is organized as follows. In Sec. II we describe
the model system and introduce the covariance matrix, which
fully characterizes the stationary state of the system. Section III
reviews the generalized Langevin equation approach consid-
ered to obtain this state. In Sec. IV we derive the expressions
giving the average and the fluctuations of the energy current
in terms of two-time correlation functions and introduce the
quantum correlations, characterized by means of the two-
and three-mode entanglements and the (right) discord. The
numerical results are presented in Sec. V, the corresponding
discussion is given in Sec. VI, and the main conclusions are
put together in Sec. VII.

II. MICROSCOPIC MODEL

We consider an open one-dimensional chain composed of
three harmonic oscillators, see Fig. 1, labeled as L (left),
C (center), and R (right), with identical mass m, natural
frequencies ωi (i = L, C,R), and position and momentum op-
erators (x̂i , p̂i). We assume bilinear interactions between first-
neighbor oscillators, L ↔ C and C ↔ R, with strength given
by a single parameter k. Each i-th oscillator is coupled with an
independent heat bath composed of N independent harmonic
oscillators, with masses miμ (μ = 1, . . . ,N), frequencies ωiμ,
and position and momentum operators (x̂iμ, p̂iμ). Eventually
we will consider the quasicontinuum limit N → ∞. The
Hamiltonian of the global system can be written as

Ĥ =
∑

i=L,C,R
(ĤSi + ĤBi), (1)

where

ĤSi = p̂2
i

2m
+ 1

2
mω2

i x̂
2
i +

∑
j=L,C,R

Uij x̂i x̂j

︸ ︷︷ ︸
ĤI

, (2)

FIG. 1. (Color online) Schematic representation of the chain
composed of the three oscillators coupled to independent heat baths,
with temperatures TL, TC , and TR. ĵiB (i = L, C,R) indicates the
energy current from the heat bath to the ith oscillator and ĵij the energy
current from the j th to the ith oscillator, in the case of TL > TC > TR.
k is the coupling constant between first-neighbor oscillators, and
giμ the coupling constant between the i-th chain oscillator and the
μth (μ = 1, . . . ,N ) oscillator of the bath.

where

U = 1

2

⎛
⎝ k −k 0

−k 2k −k

0 −k k

⎞
⎠

corresponds to the isolated chain and

ĤBi =
N∑

μ=1

p̂2
iμ

2miμ

+ 1

2
miμω2

iμ

(
q̂iμ − giμ

miμω2
iμ

x̂i

)2

(3)

describes the three independent baths and their interactions
with the oscillators, which are assumed bilinear with coupling
constants giμ. The interaction term in the microscopic model
given by ĤBi includes the renormalization terms

m��i =
N∑

μ=1

g2
iμ

miμω2
iμ

, (4)

which ensures that the frequency ωi is maintained as the bare
frequency of the i-th oscillator [49] and the complete positivity
of the total Hamiltonian (1).

In general, a system under the influence of dissipative
effects will evolve in the long-time limit toward a stationary
state in which any trace of its initial state has been wiped
out. The initial condition is only relevant in determining the
transient dynamics previous to this asymptotic state. We fix
the initial state at t0 → −∞ and assume a barely chance of
interaction between the system and the environment at to this
point. Then it is reasonable to consider that the system and
the environment are initially uncorrelated. As our analysis is
based on quantum properties in the asymptotic stationary state,
without loss of generality we will assume an initial product
state given by ρ̂0 = ρ̂S ⊗ (ρ̂BL ⊗ ρ̂BC ⊗ ρ̂BR) [42,49], where
ρ̂S is the initial state of the isolated chain and ρ̂Bi (i = L,C,R)
are the initial Gaussian quantum states corresponding to the
baths, which are not necessarily at thermal equilibrium states.
Assuming that initially the baths are in squeezed thermal states
with zero first moments [51], the following averages over the
initial state ρ̂0 are satisfied,

1

2
〈{q̂iν(t0),q̂iμ(t0)}〉ρ̂0 = δνμ

�

2miμωiμ

{1 + 2 N (ωiμ)

+ 2 Re[M(ωiμ)]},
1

2
〈{p̂iν(t0),p̂iμ(t0)}〉ρ̂0 = δνμ

�miμωiμ

2
{1 + 2 N (ωiμ) (5)

− 2 Re[M(ωiμ)]},
1

2
〈{q̂iν(t0),p̂iμ(t0)}〉ρ̂0 = δνμ � Im[M(ωiμ)],

where Re[•] and Im[•] denote the real and imaginary parts of
•, and

Mi(ωiμ) = − cosh ri sinh ri e
iθi [2Nth(ωiμ) + 1],

Ni(ωiμ) = Nth(ωiμ) (cosh2 ri + sinh2 ri) + sinh2 ri,

which satisfy the relation |Mi(ωiμ)|2 � Ni(ωiμ)(Ni(ωiμ) + 1).
We have considered the same squeeze ri for all the oscillators
of the ith bath. θi (−π < θi � π ) is a global arbitrary rotation
of the bath state ρ̂Bi , and Nth(ωiμ) is the average occupation
number of the μth oscillator in the ith bath in a thermal
equilibrium state.
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To induce an energy current across the chain, see Fig. 1,
we fix the left and right heat baths at different temperatures,
TL = T + δT and TR = T − δT , respectively, with T low
enough to ensure that the system remains within the quantum
regime. Then we modify the temperature of the central bath,
TC = T + �T , by considering different values of �T . This
setup is particularly interesting as it makes it possible to
establish a quasiclassical regime in the central oscillator while
maintaining the lateral oscillators in the quantum regime.
Below we will show that the asymptotic stationary state derived
from this manipulation of the central oscillator can exhibit
a rich variety of quantum correlations, such as two-mode
and bipartite three-mode entanglement and genuine tripartite
entanglement.

Since the total Hamiltonian (1) is quadratic in both positions
and momenta, and we have considered Gaussian initial bath
states, the asymptotic stationary state, denoted by ρ̂LCR, will
be Gaussian for any initial state of the oscillators [52,53].
Then the stationary quantum properties will be determined
by just the first and second moments of the positions x̂i and
the momenta p̂i . The former can be made arbitrarily close to
zero by unitary local transformations that do not affect the
nonlocal properties such as entanglement, whereas the second
moments determining all the correlation properties required in
our analysis are given in terms of the covariance matrix [54]

V =
[

C xx(t,t) C x p(t,t)

C px(t,t) C p p(t,t),

]
, (6)

with x̂ = (x̂L,x̂C,x̂R) and p̂ = (p̂L,p̂C,p̂R), and the two-point
(symmetrical) correlation functions

Cab(t,t ′) = 1
2 Tr(ρ̂0{â(t),b̂(t ′)}). (7)

The second moments of the energy currents also involve the
imaginary part of the two-point correlation Tr[ρ̂0 â(t) b̂(t ′)],
given by

Yab(t,t ′) = 1
2 Tr(ρ̂0[â(t),b̂(t ′)]). (8)

The covariance matrix of the state ρ̂ij corresponding to
the subsystem defined by the ith and j th oscillators can be
obtained from (6) by just taking the elements associated with
these two oscillators.

It should be emphasized that at stationary conditions the
correlation functions (7) and (8) only depend on the time
difference τ = t − t ′, and a particular initial time t is irrelevant
to obtain them. This will be important in what follows
when computing these stationary correlations by using the
generalized Langevin equation approach.

III. LANGEVIN APPROACH

Within the Langevin approach, the equations of motion that
govern the evolution of the stationary correlations are derived
from the microscopic model (1) by writing the Heisenberg
equations for the oscillator positions and tracing out the
degrees of freedom of the heat baths. This leads to the so-called
generalized Langevin equation,

m ¨̂xi + m�2
i x̂i + Uij x̂j − 1

�

∫ t

t0

dτ χi(t − τ ) x̂i(τ ) = F̂i(t),

(9)

where we have introduced the potential

�2
i = ω2

i + ��i = ω2
i + 1

πm

∫ ∞

0
dω

Ji(ω)

ω
, (10)

the susceptibilities

χi(t) = 2�

π
�(t)

∫ ∞

0
dωJi(ω) sin (ωt), (11)

and the fluctuating forces

F̂i(t) =
N∑

μ=1

giμ

{
x̂iμ(t0) cos[ωiμ(t − t0)]

+ p̂iμ(t0)

miμωiμ

sin[ωiμ(t − t0)]

}
, (12)

with �(t) the Heaviside step function and the spectral density
of the environment given by

Ji(ω) = π

2

N∑
μ=1

g2
iμ

miμωiμ

δ(ω − ωiμ). (13)

As long as the stationary solution of the generalized Langevin
equation is guaranteed, one may take the limit t0 → −∞
in Eq. (9) and then use the Fourier transform x̃i(ω) =∫

dteiωt x̂i(t) to obtain the stationary solution of the position
and momentum operators [19,42,55]. By replacing these
solutions into the correlation elements (7) and averaging over
the initial state ρ̂0, it follows that⎡

⎢⎣Cxixj
(t,t ′)

Cxipj
(t,t ′)

Cpipj
(t,t ′)

⎤
⎥⎦ = �

2

∫
dω

2π

∫
dω′

2π
e−i(ωt−ω′t ′)

×

⎛
⎜⎝ 1

imω′

m2ωω′

⎞
⎟⎠Gij (ω,ω′), (14)

with

Gij (ω,ω′) =
∑

l,m=L,C,R
α̃il(ω)〈{F̃l(ω),F̃m(−ω′)}〉ρ̂0 α̃mj (−ω′)

(15)
and

α̃(ω) = (� + U )−1, (16)

where �ij = δij [−mω2 + m�2
i − 1

�
χ̃i(ω)].

The two-point correlation functions Yab(t,t ′) (8) satisfy an
expression identical to (14) but replacing in Gij (ω,ω′) the
anticommutator of the fluctuating force by the commutator.

Expression (16) is nothing but the Fourier transform of the
(matrix) Green function [51,56] for the generalized Langevin
equation (9). The real and imaginary parts of the Fourier
transform χ̃i(ω) of the susceptibility (11) are given by (see
Appendix A for further details)

Im[χ̃i(ω)] = �[�(ω) Ji(ω) − �(−ω) Ji(−ω)], (17)

Re[χ̃i(ω) ] = 1

π
P

∫
Im[χ̃i(ω′)]

ω′ − ω
dω′, (18)
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where P denotes the Cauchy principal value. The second
expression is the well-known Kramers-Kronig relation [49]
arising from the causal nature of the susceptibility.

For the three-mode system to reach a stationary state, the
function αij (t) must approach a combination of decaying
exponentials in the long-time limit [57]. According to a
previous study of the equations of motion of the system-
plus-environment complex in terms of normal modes [56],
the existence of a well-defined stationary solution entails that
[α̃ij (ω)]−1 has no real root �b corresponding to the frequency
of a bound normal mode, which implies that Im[χ̃i(�b) ] 	= 0.
From Eq. (17), the latter condition means that �b must be
contained within the domain of the bath spectral density
Ji(ω) [56]. In general, the heat baths can be considered
as composed of a large number of degrees of freedom
with finite broadband spectrum, in which the most energetic
environmental degree is roughly determined by a cut-off
frequency ωc. This ensures that the natural frequencies of the
system are well embedded in the environmental spectrum, and,
consequently, it makes possible an irreversible energy transfer
from the system to the environment, at least in a finite time
much larger than the natural time scale of the system. We shall
impose ωc >>

√
ω2

i + k/m (i = L,C,R) in order to ensure
an irreversible evolution of the three-oscillator chain toward a
well-defined asymptotic stationary state.

The covariance matrix of this stationary state is completely
determined by the correlation functions (14) evaluated at
equal time, once the correlation functions of the fluctuating
forces (12) have been obtained. These correlations depend only
on the initial environmental state. Below we show the relation
between the fluctuating forces and the initial covariance
matrix (5) of the heat baths.

A. Fluctuation-dissipation relation

Our choice of the initial environmental state implies that
the fluctuating forces of the different heat baths are statistically
independent, i.e., 〈{F̂l(t),F̂m(t ′)}〉 = 0 for all l 	= m, whereas,
according to Eq. (5), the symmetrical two-time correlation
function of the fluctuating forces associated with a given lth
bath is given by (see Appendix B for further details)

1

2
〈{F̂l(t),F̂l(t

′)}〉ρ̂0

=
N∑

μ=1

� g2
lμ

mlμ ωlμ

{[
1

2
+ Nl(ωlμ)

]
cos[ωlμ(t ′ − t)]

+ Re[Ml(ωlμ)] cos[ωlμ(t + t ′ − 2t0)]

+ Im[Ml(ωlμ)] sin[ωlμ(t + t ′ − 2t0)]

}
. (19)

The average of the corresponding commutator can be ex-
pressed as

1

2
〈[F̂l(t),F̂m(t ′)]〉ρ̂0 = i δlm

�

2

N∑
μ=1

g2
lμ

mlμωlμ

sin[ωlμ(t ′ − t)].

(20)

The dependence of the symmetrical two-time correlation
functions on the initial time t0 is eliminated in the case
of an initial thermal equilibrium state of the lth bath, in
which Ml(ωlμ) = 0 and Nl(ωlμ) = Nth(ωlμ) for all μ values.
Although in the previous section we have already fixed the
time limit t0 → −∞ in order to obtain the stationary solution,
we shall maintain the notation t0 for convenience in order to
make more clear the following discussion.

As shown in Appendix B, the nonstationary terms in
Eq. (19) come from the average of factors involving a

†
iμa

†
iν

and aiμaiν , with aiμ (a†
iμ) the annihilation (creation) operator

of the μth mode in the ith reservoir. These terms describe
nonconservative energy processes that take place in the heat
bath at the initial time t0, and, therefore, they may influence
the transient dynamics of the three-oscillator chain. However,
they become highly oscillatory in the long-time limit [(t + t ′ −
t0) → ∞] and their contribution to the stationary properties
may be disregarded [46]. When taking the quasicontinuum
limit

∑
μ → ∫

dω in the environment spectral density, only
the stationary term in Eq. (19) remains. This assertion holds
for an environment with a broad spectrum limited by ωc, and a
finite interaction between the reservoir modes and the system
oscillators. Mathematically, the latter translates into that the
spectral densities Jl(ω) are finite continuous functions and the
corresponding coupling strengths should decay at least as 1/ω2

at high frequencies. Under these conditions, the long-time
limit of the symmetrical two-time correlation function (19)
reduces to the following expression in the frequency domain
(see Appendix B for details):

1

2
〈{F̃l(ω),F̃l(ω

′)}〉ρ̂0 = 2π δ(ω + ω′) Im[χl(ω)]

× coth

(
� ω

2 kB Tl

)
cosh(2rl). (21)

The average of the corresponding commutator reduces to

1
2 〈[F̃l(ω),F̃l(ω

′)]〉ρ̂0 = 2π δ(ω + ω′) Im[χl(ω) ]. (22)

Similar results have been previously obtained within the
path integral formalism [46,58], see also Ref. [59].

We point out that an initially squeezed state of the
environment makes the reduced system notice an effective
temperature above the temperature Ti (i ∈ {L,C,R}) of the
heat bath at thermal equilibrium. This effect has interesting
consequences in the efficiency of thermal machines within the
quantum regime [11].

Now we can replace the autocorrelations (21) in the
expressions (15) and perform the integral in the frequency ω′
to obtain a closed-form expression for the two-time correlation
functions Cab(t,t ′). Notice that Cab(t,t ′) = Cab(τ = t − t ′,0)
due to the stationary condition of the fluctuating force
correlation. A similar procedure is followed for the functions
Yab(t,t ′) (8).

In general, there are no analytic expressions giving the
integrals involved in the correlation functions in terms of the
system parameters, such as the bath temperatures, the oscillator
frequencies, and the coupling strengths. We will compute them
numerically.
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IV. ENERGY CURRENT AND QUANTUM CORRELATIONS

The nonequilibrium conditions imposed by the different
bath temperatures drive an energy current through the system,
see Fig. 1. A discrete definition of the energy currents
associated with each chain oscillator can be derived from its
local energy [41,60,61]

ĥi = p̂2
i

2m
+ 1

2
mω2

i x̂
2
i + ûi(x̂)

+ 1

4

N∑
μ=1

miμω2
iμ

(
giμ

miμω2
iμ

x̂i − q̂iμ

)2

, (23)

with ûi(x̂) = (x̂i − x̂C)2/4 for i = (L,R) and ûC(x̂) = [(x̂C −
x̂L)2 + (x̂C − x̂R)2]/4. The time derivative of ĥi leads to the
discrete continuity equations

dĥi

dt
= ĵi(t) + ĵiB(t) (24)

with ĵi(t) = ĵi C(t) for i = (L,R) and ĵC(t) = ĵCL(t) + ĵCR(t).
The term

ĵij (t) = −ĵj i(t) = k

4m

[
{x̂j (t),p̂j (t)} − {x̂i(t),p̂i(t)}

+ ({x̂j (t),p̂i(t)} − {x̂i(t),p̂j (t)})︸ ︷︷ ︸
Correlation terms

]
(25)

can be identified as the energy current from the j th oscillator
to the ith oscillator, whereas

ĵiB(t)= 1

4m

N∑
μ=1

[
giμ

(
{q̂iμ(t),p̂i(t)} − giμ

miμω2
iμ

{x̂i(t),p̂i(t)}

− m

miμ

{x̂i(t),p̂iμ(t)}
)

+ mω2
iμ{q̂iμ(t),p̂iμ(t)}

]
(26)

corresponds to the energy current from the ith heat bath into
the ith oscillator. At stationary conditions the total current
coming from the baths into the system becomes zero. Here we
will focus on the analysis of the total current flowing from the
L to the R oscillator, defined as

Ĵ (t) = ĵCL(t) + ĵRC(t). (27)

Our study is based on the stationary properties of the
total energy current, which are basically determined by its
first and second moments or, equivalently, by its average
and fluctuations. The steady-state average of the total energy
current

〈Ĵ 〉 = 〈ĵRC〉 + 〈ĵCL〉 (28)

can be obtained by tracing (25) over the the stationary state
and using the stationary solutions of the two-time correlation
functions (14), which leads to

〈ĵij 〉 = k

2m

[
Cxj pj

(t,t) − Cxipi
(t,t)

+Cxj pi
(t,t) − Cxipj

(t,t)
]

(29)

for the local currents ĵCL and ĵRC .

Since the quantum correlations shared by the oscillators,
in particular entanglement, are partially encoded on the
correlation terms indicated in (25), one might expect that the
energy current could be sensitive to these correlations. Notice
that the total current involves the correlations between the cen-
tral and the side oscillators, while it does not depend on the
crossed correlation function between the two side oscillators.
We shall further analyze this issue in Sec. VI.

A. Fluctuations of the energy current

To have a better understanding of the system behavior
under nonequilibrium conditions we also study the two-
time correlation functions of the energy currents (25). The
fluctuations can be obtained from the symmetrical version of
the classical two-time correlations and expressed as

Kjij jlm
(τ,0) = 1

2 〈{ĵij (τ ) , ĵlm(0)}〉 − 〈ĵij (τ )〉〈ĵlm(0)〉. (30)

Theoretically, the response of a system under external per-
turbations can be studied in terms of these correlations
functions [14,49]. Notice that we evaluate the fluctuations in
the nonequilibrium stationary state, so we might expect that
Eq. (30) can elucidate some properties of stationary nonequi-
librium rather than the equilibrium quantum correlations [30].
Furthermore, it has been shown that Eq. (30) is related to
the fluctuations of the stationary energy current across the
chain [62].

As the stationary state obeys a Gaussian distribution, the
four-time correlation terms implicit in Kjij jlm

(t,t ′) can be
decomposed into terms involving the product of two-time
correlations. Then the current-current response function (30)
can be expressed as

Kjij jlm
(τ,0) = k2

4m2

∑
α,α′ = i,j

β,β ′ = l,m

{
Sα,β

[
Cxαxβ

(τ,0) Cpα′ pβ′ (τ,0)

+Yxαxβ
(τ,0) Ypα′ pβ′ (τ,0)

]
+ Sα,β ′

[
Cxαpβ

(τ,0) Cxβ′ pα′ (−τ,0)

−Yxαpβ
(τ,0) Yxβ′ pα′ (−τ,0)

]}
, (31)

where Sa,b is the sign of the cofactor of the element (a,b)
in the 4 × 4 array defined by the indexes {i,j,l,m}. Finally,
according to Eq. (27), the autocorrelation function of the total
current flowing from the L to the R oscillator is given by

KJJ (τ,0) = KjCL jCL
(τ,0) + KjCL jRC

(τ,0) + KjRC jCL
(τ,0)

+KjRC jRC
(τ,0). (32)

In contrast to the average energy current, the correlation
function KJJ (τ,0) involves crossed terms between the R and
the L oscillators. In addition, while 〈Ĵ 〉 (28) is given by a
linear combination of two-time correlation terms, KJJ (τ,0)
has a nonlinear dependence on such terms. These two aspects
will be useful in the subsequent discussion. Alternatively, the
behavior of 〈Ĵ 〉 and KJJ (τ,0) will help us to gauge whether
the average properties of the energy current are sensitive to
quantum correlations, such as genuine tripartite entanglement.
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B. Quantum correlations: Discord and entanglement

We shall analyze the two-mode quantum correlations
between the ith and j th oscillators by means of the (Gaussian)
discord measure on the right [63–65], denoted by D←(ρ̂ij ).
The entanglement between both modes can be quantified by the
well-known logarithmic negativity EN (ρ̂ij ) [65–67]. In partic-
ular, we devote special attention to the entanglement EN (ρ̂LR)
and the discord D←(ρ̂LR) between the side oscillators.

We use a recent criterion in the realm of continuous-variable
systems [68] to study tripartite entanglement, which is a good
estimator for κ-partite entanglement [69] in n-mode Gaussian
as well as non-Gaussian states. A tripartite harmonic system
may develop a bipartite three-mode entanglement, which
means that there is at least a bipartition of the three-mode
system that is entangled, or genuine tripartite entanglement,
which corresponds to the case in which all the bipartitions
are entangled and the state ρ̂LCR cannot be written as a
convex combination of bipartite separable states. Here the
criterion reduces to evaluate a figure of merit Tκ,n, such as
a positive value of T3,3(ρ̂LCR) [T2,3(ρ̂LCR)] indicates that the
state ρ̂LCR is genuine tripartite entangled (bipartite three-mode
entangled) [68,69].

As we are dealing with stationary Gaussian states, all the
previously mentioned indicators of quantum correlations can
be directly computed from the covariance matrix V given by
Eq. (6). The logarithmic negativity can be expressed as [65]

EN

(
ρ̂ij

) = max{0, − ln (2ν−)}, (33)

where ν− stands for the lowest symplectic eigenvalue of the
partial transpose covariance matrix V

Tj

ij , corresponding to
the reduced density matrix ρ̂ij . The (right) discord is given
by [22,23],

D←(ρ̂ij ) = I (ρ̂ij ) − I←(ρ̂ij ), (34)

with the total correlations

I (ρ̂ij ) = S(ρ̂i) + S(ρ̂j ) − S(ρ̂ij ) (35)

and the classical correlations

I←(ρ̂ij ) = max
�

(j )
l

{
S(ρ̂ij ) −

∑
l

plS
(
ρ̂

(l)
i

)}
, (36)

which are given in terms of the von Newman entropy S(ρ̂).
For general states, the computation of quantum discord (34) is
rather difficult since it involves an optimization procedure over
all positive operator-valued measurements (POVMs) on the j

mode, denoted by �
(j )
l . However, it was proved in Ref. [70]

that for a large family of two-mode Gaussian states Gaussian
POVMs return the optimal value in Eq. (36). Restricting the
optimization procedure to Gaussian measurements allows us
to obtain closed-form expressions for the quantum discord as a
function of the covariance matrix V ij [63–65]. It is important
to realize that these indicators of quantum correlations involve
a nonlinear dependence on the density operator and the two-
time correlation functions. See Appendix C for further details
of the logarithmic negativity, the quantum discord, and the
separability criteria Tκ,n.

V. RESULTS

We now investigate the average properties of the total
current Ĵ when the three oscillators share two-mode and
tripartite entanglements. In a first approach, the analysis can
be simplified assuming that the environment leads to an Ohmic
dissipation. For a nanomechanical setup, one may think that
the thermal relaxation is mainly due to the coupling with the
acoustic phonons of the substrate, which may lead to linear
spectral density at low oscillator frequencies. However, in
some cases, the dimensionality of the environment may induce
super-Ohmic dissipation. Here we analyze both the Ohmic
and super-Ohmic dissipations, which are characterized by the
spectral densities

J
(Oh)
i (ω) = πmγi

2
ω e−ω/ωc (37)

and

J
(SOh)
i (ω) = πmγi

2

ω2

ωc

e−ω/ωc , (38)

respectively, with γi the dissipative rate for the ith oscillator
and ωc the cut-off frequency of the environmental spectrum.
As argued in Sec. III, the stationary state is reached in a time
scale larger than any of the natural time scales implicit in the
dynamics of the open chain; namely {ω−1

c ,γ −1,�/2πKBT }.
From now on we set the environmental cut-off frequency

ωc = 20 � and the typical values for nanomechanical os-
cillators � = 1 GHz and m = 10−16 kg. To illustrate the
analysis we present the results obtained for arbitrarily fixed
dissipative rates, γL = γR = 10−4 � and γC = 0.05 �. We
have checked that different values of γi basically affect the
magnitude of the quantum correlations and the energy currents,
while they barely modify their overall behavior. With this set
of parameters the system begins to exhibit quantumness at
temperatures in the range of milli-Kelvin. We also assume
of-resonance oscillators with frequencies ωL = � + 0.4 δω,
ωC = � + 0.9 δω, and ωR = � − 0.7 δω, given in terms of a
detuning parameter δω.

The condition |δT /T | < 1 ensures positive bath tempera-
tures, with the energy current flowing from the L (R) to the
R (L) oscillator for δT /T > 0 (<0). We have fixed δT /T =
0.95 in all the numerical simulations to guarantee a significant
current across the chain.

A. Two-mode entanglement and average energy current

We start by analyzing the behavior of two-mode entan-
glements and the total energy current with the temperature
gradient �T . As Fig. 2 shows, the three oscillators become
two-mode entangled at low-temperature gradients, with this
entanglement exhibiting a plateau for negative gradients.
Interestingly, the total current flowing through the oscillator
chain presents a similar plateau. This can be related to the
proximity of the central oscillator to its ground state at very
low temperatures TC , which is effectively reached for �T/T 
−1. A similar result for entanglement has been obtained in
the study of the influence of heat transport on the two-mode
entanglement between oscillators that are embedded in a
disordered harmonic chain connected to heat baths at both
ends [71]. It has been shown that a plateau emerges when

062123-6



QUANTUM CORRELATIONS AND ENERGY CURRENTS . . . PHYSICAL REVIEW E 91, 062123 (2015)

FIG. 2. (Color online) (a) The two-mode L|R entanglement (labels on the left), and the C|R and L|C entanglements (labels on the right) as
a function of the temperature gradient �T . (b) The average of the total energy current across the chain as function of the temperature gradient.
On both panels the orange solid line corresponds to Ohmic dissipation and the blue dashed line to super-Ohmic dissipation. The temperature
gradient must satisfy �T/T > −1 to prevent the temperature of the central oscillator from becoming negative. We have fixed δω/� = 0.5,
k/m�2 = 1.8, and kBT /��  0.27.

the energy spectrum is bounded from below since each site
of the chain suffers a harmonic potential. As the central
oscillator gets closer to the ground state for negative values
of �T , the energy flowing across this oscillator becomes
bounded as the temperature gradient decreases. In the absence
of the harmonic confinement the logarithmic negativity would
continue growing up to a maximum value, as the heat transport
decreases [71]. Moreover, the plateau in the entanglement
remains even when the average energy current across the chain
becomes zero, though the temperature gradient �T is not zero.
This occurs when δT = 0 and the left and right oscillators are
identical, �L = �R, and therefore 〈ĵCL〉 = −〈ĵRC〉. This last
point also underlines that the appearance of entanglement is
mainly attributed to proximity of the system to its ground
state rather than to the presence of an energy flow induced by
nonequilibrium conditions.

The two-mode entanglement rapidly decreases for positive
�T , while the energy current grows monotonically. This is
expected as the temperature of the whole three-mode system
is increased on average, which is generally harmful for
entanglement. Previous results have suggested this behavior;
in fact, it has been shown that in a harmonic chain an increasing
δT is detrimental to build up bipartite or tripartite entanglement
due to the rise in the thermal noise [42]. In addition, it can
be shown from (21) that an initially squeezed environmental
state effectively increases the temperature. Hence, in the

present setting an initial squeezed bath state does not favor
the appearance of stationary entanglement.

Moreover, one may expect that non-Markovian effects,
which are more relevant for super-Ohmic dissipation, would
substantially degrade the entanglement with respect to the
Ohmic situation. According to Fig. 2, the two-mode entan-
glement is essentially the same for the chain suffering Ohmic
or super-Ohmic dissipation; namely EN (ρ̂LR), EN (ρ̂RC), and
EN (ρ̂CL) practically coincide for both situations. This result
is in contrast with the observed transient evolution of the
two-mode entanglements under different environmental spec-
tral densities, in which the super-Ohmic dissipation induces
stronger disentanglement effects [72]. The coincidence of
the stationary two-mode entanglements also differs from
the emergence of entanglement in a situation in which the
oscillators are affected by the same bath [20]. In the case of
the energy current, we observe that it is strongly affected by
the interaction with the heat baths, determined by the fixed
spectral density.

We have performed an extensive analysis of the two-mode
entanglements and the energy currents involving the central
oscillator, in terms of both the temperature gradient �T and
the coupling strength k. As Fig. 3 shows, a similar behavior
to that illustrated in Fig. 2 is reproduced for different values
of k. The entanglements EN (ρ̂RC) and EN (ρ̂LC) increase for
lower-temperature gradients and stronger couplings, whereas

FIG. 3. (Color online) The two-mode entanglement EN (ρ̂RC) (a) and the stationary energy current 〈ĵRC〉 (units of ��2) (b) in terms of the
temperature gradient �T and the coupling strength k under Ohmic dissipation. The system parameters are the same as in Fig. 2.
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FIG. 4. (Color online) (a) The criteria T23 and T33 as a function of the temperature gradient for Ohmic dissipation. (b) The time evolution
of the fluctuations of the total current under Ohmic dissipation, in a system that is genuine entangled (�T/T = − 0.95) (black solid line),
bipartite three-mode entangled (�T/T = 1.9) (blue dashed line), and likely separable in the three possible bipartitions (�T/T = 4.3) (red
dot-dashed line). The remaining parameters are k/m�2 = 2, δω/� = 0.5, and kBT /��  0.27.

the energy currents 〈ĵRC〉 and 〈ĵCL〉 exhibit a relatively weak
dependence on the coupling strength and the expected increase
with the temperature gradient. Also the plateau of small energy
currents arising in the proximity of the ground state of the
central oscillator can be clearly observed.

Hence, our results indicate that the energy currents across
the system are insensitive to the emergence of two-mode
entanglements between the oscillators, both under Ohmic
and super-Ohmic dissipation, and irrespective of the coupling
strength with the heat baths. The two-mode entanglement
EN (ρ̂LR) and total energy current 〈Ĵ 〉 remain nearly un-
changed, provided that the central oscillator is close enough
to the ground state, at temperatures below T/2. An increase in
the temperature of this oscillator results in a deterioration of
the entanglement and an increase in the energy current.

B. Energy current correlations and three-mode entanglement

In this section we analyze the three-mode entanglement
and the energy current correlations between the left and right
oscillators, which includes correlation terms involving the
three oscillators, see Eq. (32). Figure 4 shows the bipartite
three-mode (κ = 2) and the genuine tripartite (κ = 3) entan-
glements measured by the corresponding criteria Tκ,3 [68,69].
The results for both the Ohmic and super-Ohmic dissipations
are quite similar. In the low-temperature and strong-coupling
regime, the three-mode system exhibits genuine tripartite
entanglement, though this feature rapidly disappears for
positive values of �T , such as occurs with the two-mode
entanglement. Strikingly, the system still remains bipartite
three-mode entangled at relatively high temperature gradients
(�T/T ≈ 2). Hence the tripartite entanglement is more robust
to temperature changes than the two-mode entanglement
between the side oscillators.

Figure 4 also shows the initial time evolution of the
energy current correlations for three different three-mode
entanglement configurations. As expected, the fluctuations
of the energy current exhibit an oscillatory behavior, which
should be progressively attenuated at larger time intervals.
According to a previously reported exponential time decay of
the two-time correlation functions (14) in a damped harmonic
oscillator at low temperature T , such oscillations should be
effectively suppressed at time τ > �/2πkBT [57].

As evidenced by Fig. 4, the energy current correlations
exhibit similar oscillations as the system evolves from genuine
tripartite to bipartite three-mode entanglement. The most
significant discrepancy between these two configurations is an
increase in the oscillation amplitude, which can be attributed
to the thermal fluctuations that arise with increasing the
temperature gradient. Indeed, a similar oscillating behavior in
the fluctuations is still observed at relatively large temperature
gradients (�T/T � 4), when the system is expected to be
separable in the three possible bipartitions.

The results we have obtained from an analysis considering
an extensive set of parameters {T , k, δω, δT } corresponding
to different multipartite entanglement configurations, for both
Ohmic and super-Ohmic dissipations, also indicate that the
energy current correlations across the harmonic chain are
insensitive to the emergence of tripartite genuine or bipartite
three-mode entanglement.

To conclude this section we focus on the energy current
correlations evaluated at equal time, see Fig. 5, which will
be useful in the subsequent discussion. Both the stationary
fluctuations and the average of the energy current, see Fig. 3,
grow with increase of the temperature gradient. But, in contrast
to the average energy current, the plateau at small values of the
fluctuations is observed above a given value of the coupling
strength, which is larger in the case of Ohmic dissipation.

Once again, the fluctuations of the energy current are
insensitive to whether the system experiences bipartite three-
mode or genuine tripartite entanglement. Similar results are
obtained for the current-current response involving the central
and the side oscillators.

C. Quantum discord

One might expect that a scenario similar to the one previ-
ously described for the two- and three-mode entanglements
would be repeated in the presence of other nonclassical
correlations, such as discord. In this section we analyze
a possible connection between the energy current and the
quantum correlations measured by the right-discord D←(ρ̂RL).
Although not shown in this work, similar results are obtained
from the analysis of the discord D→(ρ̂RL) measured from the
left. We also point out that the two-mode discord contains the
contribution of the two-mode entanglement studied in previous
sections.
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FIG. 5. (Color online) Density plot of the energy current corre-
lations KJJ (t,t) (units of �

2�4) as a function of the temperature
gradient �T and the coupling strength k for Ohmic dissipation. A
similar result is obtained for super-Ohmic dissipation. The black
dashed line delimits the states in which the hierarchy T3,3 changes
from positive to negative. The parameters are the same as in Fig. 4.

We have found that discord exhibits a strong dependence
on both the temperature gradient and the frequencies of the
oscillators. As shown in Fig. 6, it presents a sharp peak
centered at the resonance condition (δω = 0) and with an
amplitude that grows with increasing the temperature gradient.
Interestingly, the discord appears strongly correlated with the
mean interaction energy between the oscillators,

〈ĤI 〉 = k

2

[
CxLxL (t,t) + 2 CxCxC (t,t) + CxRxR (t,t)

− 2 (CxLxC (t,t) + CxRxC (t,t))︸ ︷︷ ︸
Correlation terms

]
, (39)

which has maximum strength also at resonance, see Fig. 6. This
resonant interaction becomes stronger for higher-temperature
gradients, which also increase the discord. As all the negative
contributions to 〈ĤI 〉 come from the crossed correlation
terms, it becomes evident that the maximum interaction

strength occurs when these correlations take the highest values,
which also turns into the optimal conditions for discord.
This result evidences an underlying connection between the
interaction energy and the discord, as could be anticipated
considering that the discord would be zero in the absence of
interaction.

Figure 6 also shows that the discord in the resonant
system begins to grow almost linearly with the temperature
gradient and then approaches a constant value at higher
gradients. An initially squeezed central reservoir enhances
the creation of discord for both Ohmic and super-Ohmic
dissipation. This is in agreement with the foregoing results,
as the squeeze of the initial bath state effectively increases
the temperature perceived by the oscillators, see Eq. (21).
Then an increase of the stationary discord between the side
oscillators may be induced either by initially squeezing the
central reservoir or increasing its temperature. It has been
shown that discord may be additionally created by local noisy
operations, such as dissipation [24,73]. Hence, it may happen
that discord would be generated by an energy current induced
by a temperature gradient, as this current would make each
oscillator to dissipate.

Considering that the discord contains all the quantum
correlations, it would be interesting to analyze whether the
entanglement available in the system contributes to its increase
with the temperature gradient. In this respect, since entangle-
ment can be created only by nonlocal manipulations and it
becomes zero at high-temperature gradients, see Sec. V A,
we may conclude that such increase of the discord must be
mainly due to local operations. The paramount role of the
local manipulations in the creation of quantum correlations at
resonance conditions is correlated with a maximum average
interaction strength between oscillators of similar frequencies,
see Fig. 6 and Eq. (39). Notice that the discord grows with �T

even in the absence of an energy current between the side
oscillators (δT = 0).

The plateau of maximum discord at high-temperature
gradients can be attributed to the very low temperatures
of the side oscillators TL,R < ��/kB , which guarantees the
“coherence” of the local manipulations. Indeed, the increase
in the discord gradually disappear as the mean temperature T

increases, and therefore the three-mode system approaches a
classic state. We have observed that the discord D←(ρ̂RL) has
almost disappeared at temperature T  50 ��/kB .

FIG. 6. (Color online) (a) The right discord as a function of the detuning δω for the temperature gradients �T/T = 3.8 and 0.95 (black
dot-dashed line). (b) The average interaction energy 〈ĤI 〉, see Eqs. (2) and (39), in terms of δω. (c) The right discord at resonance (δω = 0),
as a function of the temperature gradient. The black dot-dashed line gives both the Ohmic and super-Ohmic dissipative discord for an initially
squeezed central reservoir, with rC = 1 (rR = rL = 0). In the three panels the orange solid and blue dashed lines correspond to Ohmic and
super-Ohmic dissipations, respectively, and the parameters are k/m�2 = 1.8 and kBT /��  0.53.
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FIG. 7. (Color online) The discord D←(ρ̂RC) (a) and the energy current 〈ĵRC〉 (units of ��2) (b) between the central and right oscillators
in the resonant system under Ohmic dissipation. Similar results are obtained for the discord and the energy current between the C and L
oscillators, under both Ohmic and super-Ohmic dissipations. The parameters are the same as in Fig. 6.

As expected, the two-mode discord between the central and
the side oscillators is enhanced by increasing the interaction
strength, see Fig. 7, whereas the trend of the central oscillator
towards a classical state, by increasing its temperature through
higher values of �T , causes a progressive deterioration of the
discord. In the case of the energy currents between the central
and the side oscillators, they exhibit an almost linear increase
with the temperature gradient, which is barely modified by the
strength of the coupling interaction. Once again, the energy
currents do not seem to be related to the significant nonclassical
correlations shared by the oscillators.

VI. DISCUSSION

Considering that the energy current between two oscillators
has an explicit dependence on crossed correlations between
them, one could expect that the emergence of entanglement in
the system should have detectable effects on such a current.
Therefore, it would be interesting to determine whether a
formal connection between entanglement and the average
properties of the energy current can be formally established.

The results presented in Sec. V A indicate that the behavior
of the energy current is not modified by the presence of two-
mode entanglement. A direct comparison between the two-
mode entanglement between the side oscillators EN (ρ̂RL) and
the total energy current 〈Ĵ 〉 suggests an elusive correlation
between them, see Fig. 2.

Although the most important contribution to the local
currents 〈ĵij 〉 (29) comes from crossed correlation terms
that encode part of the quantum correlations shared by the
oscillators, the total current 〈Ĵ 〉 (28) does not have an explicit
dependence on the correlation terms involving the L and R
oscillators. Then the two-mode entanglement EN (ρ̂RL) should
not necessarily affect the total current. This reasoning does not
exclude, however, the possibility that the total current could be
sensitive to the two-mode entanglement shared by the central
and the side oscillators.

The conjecture that entanglement and energy current are
intimately related would lead to the natural question regarding
whether the current ĵij could serve as a useful witness of the
entanglement between the ith and j th oscillators. According to
the theory of entanglement, an entanglement witness ŴÔ based

on a (bounded) Hermitian operator Ô may be constructed as
ŴÔ = Ô − inf{〈�i | 〈�j | Ô |�i〉 |�j 〉}Î, where the last term
is the infimum value of Ô among all the product states
|�i〉 |�j 〉 [74]. For Ô = ĵij (25) it follows that

Ŵĵij
= ĵij − k

2m
inf

{
CProd

xj pj
(t,t) − CProd

xipi
(t,t) + CProd

xj pi
(t,t)

−CProd
xipj

(t,t)
}
Î, (40)

where CProd
ab (t,t) is obtained from (14) by considering the

average over product states. Ŵĵij
is a good candidate to unveil

the two-mode entanglement EN (ρ̂ij ) provided that Tr(ρ̂ij Ŵĵij
)

takes a negative value for at least one entangled state. Unfortu-
nately, such a rigorous proof requires a closed-form expression
for CProd

ab (t,t), which is currently out of the scope of this study
as we are dealing with a system under the nonequilibrium
conditions induced by two different temperature gradients.
Though we cannot guarantee whether Eq. (40) constitutes
a good estimator of entanglement, the results of Sec. V A
evidence the difficulty of assessing entanglement through Ŵĵij

,
mainly due to the apparent insensitivity of the energy current
〈ĵij 〉 to the two-mode entanglement EN (ρ̂ij ), see Fig. 3.

In addition, though the correlation terms in Eq. (25)
partially carry the quantum correlations shared by the chain
oscillators, they themselves do not necessarily manifest
entanglement. Indeed, the so-called Peres-Hodorecki-Simon
inequality [75]

ρ̂ij entangled =⇒ Cxixj
(t,t)Cpipj

(t,t)

−Cxipj
(t,t)Cpixj

(t,t) < 0, (41)

which provides a criterion to detect the two-mode entangle-
ment between the ith and j th oscillators, already displays a
nonlinear relation between entanglement and the elements of
the covariance matrix.

A common feature of the entanglement measures (or
entanglement monotones) is their nonlinear functional depen-
dence on the density operator [2], as occurs in the case of
the logarithmic negativity [66]. In some sense, the reliable
observation of entanglement relies on the ability to measure
nonlinear properties of the quantum state [76]. According to
the expressions for the total energy current 〈Ĵ 〉 (29) and the
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criterion for entanglement (41), the first moment of the energy
current depends linearly on the crossed correlation terms,
whereas the entanglement exhibits a nonlinear dependence on
such terms. Hence, the energy current between the ith and j th
modes is not expected to manifest the emergence of two-mode
entanglement.

Following the previous argument, the fluctuations of the to-
tal current (32) could manifest the emergence of entanglement,
as it involves correlation terms between all the oscillators. In
Sec. V B we focused on the tripartite entanglement and showed
that KJJ (t,t) seems to be insensitive to the inseparability
properties of the three-mode chain. A similar conclusion was
drawn from the comparison of the time evolution of the
fluctuations KJJ (τ,0) at different entanglement configurations
of the stationary state, see Fig. 4. We remark that this result
is not in contradiction with the previous argument based on
criterion (41), as it provides a necessary, but not sufficient,
condition for the existence of entanglement.

Considering that, in contrast to entanglement, almost any
quantum state has a non-negative discord [77], a distinct behav-
ior of these two quantum correlations might be expected [1].
The results of Sec. (V C) indicate that in the proximity
of a resonance condition, a finite energy current induced
by the temperature gradient �T may generate nonclassical
correlations between the left and right oscillators, even when
the total energy current between them becomes zero. This
behavior has been correlated with a maximum strength of
the average interaction between the harmonic oscillators, see
Fig. 6. The same results also show that the energy current is not
modified by the emergence of discord, see Fig. 7. The average
properties (mean value and fluctuations) of the energy current
as a whole exhibit a “linear” behavior ruled by the temperature
gradients, irrespective of the significant two-mode quantum
correlations that may be present in the system. As a measure of
such correlations we have analyzed the logarithmic negativity,
the tripartite entanglement, characterized by the criteria T2,3

and T3,3, and the quantum discord.
Finally, we have considered a linear harmonic chain where

each oscillator is connected to an independent heat bath,
in which the emergence of quantum correlations essentially
stems from the proximity of the system to the ground
state. In this case the spatial arrangement of the different
oscillators is not relevant for quantum correlations, in contrast
to what might be expected in systems with oscillators within
common environments [20]. The study of the energy current
and quantum correlations in systems exhibiting nonlinearities
deserves further attention.

VII. SUMMARY AND CONCLUDING REMARKS

We have performed an extensive analysis of the quantum
correlations, and the mean value and fluctuations of the energy
current across a three-oscillator linear chain at the stationary
state, both under Ohmic and super-Ohmic dissipation. We
have considered initially squeezed reservoir thermal states
and applied the GLE formalism to determine the correlation
functions between the position and momentum operators of the
chain oscillators, which completely characterize the stationary
properties.

Interestingly, the results obtained for the quantum corre-
lations are quite similar for both Ohmic and super-Ohmic
dissipation. This suggests that the non-Markovian effects
do not significantly modify the Markovian results for the
stationary properties of the quantum correlations in a system of
oscillators in contact with independent heat baths. Moreover,
the initial squeezing of a heat bath effectively increases
the temperature that the oscillator chain perceives from this
bath and eventually becomes detrimental for the buildup of
stationary entanglement.

A different behavior is observed in the case of discord,
which can be created by local noisy operations. These quantum
correlations highly depend on both the interaction strength
between the oscillators and the detuning of their natural fre-
quencies. In particular, the two-mode discord between the side
oscillators in the presence of temperature gradients is enhanced
at resonance. This arises from the combination of two aspects:
the average interaction between the side oscillators reaches
its maximum strength and the increase of the thermal noise
in the central oscillator due to larger temperature gradients.
The underlying connections between resonance and thermal
nonequilibrium conditions in the behavior of discord deserves
further study.

According to our results, both the average and the fluc-
tuations of the stationary energy current across the oscillator
chain are mainly determined by the two imposed temperature
gradients, and do not seem to be related to the appearance of a
rich variety of quantum correlations in the system, comprising
two-mode discord and entanglement, bipartite three-mode en-
tanglement, and genuine tripartite entanglement. The absence
of quantum correlation effects in the average energy current
can be partially understood in terms of its linear dependence
on the correlation terms between the oscillators. In the case of
the fluctuations, the more intricate dependence on such terms
makes it more complex to elucidate their possible connection
with quantum correlations.

Nowadays the quantum correlations under thermal
nonequilibrium conditions have become a topic of great
interest in the fields of quantum information, quantum thermo-
dynamics, and the theory of open quantum systems. Generally
the nonclassical correlations, such as entanglement, exhibit
a nonlinear dependence on the density operator that makes
it difficult to establish any formal connection between them
and the response of the system to nonequilibrium constraints.
We hope that this work may contribute to stimulate further
research in this direction.
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APPENDIX A: SUSCEPTIBILITY

In this Appendix we derive the real and imaginary parts of the Fourier transform of the susceptibility χi(t) (11). Considering
the spectral density (13), the imaginary part of the Fourier transform χ̃i(ω) can be expressed as

Im[χ̃i(ω)] = π�

2

N∑
μ=1

g2
iμ

miμωiμ

[δ(ω − ωiμ) − δ(ω + ωiμ)] = �[�(ω)Ji(ω) − �(−ω)Ji(−ω)]. (A1)

Then the real part can be obtained from the causality of χi(t), according to

Re[χ̃i(ω)] = H{Im[χi(ω
′)]}(ω) � 1

π
P

∫
Im[χi(ω′)]

ω′ − ω
dω′, (A2)

where H[•](ω) denotes the Hilbert transform of •. Using Eq. (A1) it follows that
Re[χi(ω)] = H[�(ω′)Ji(ω

′)](ω) + H[�(ω′)Ji(ω
′)](−ω). (A3)

Below are given the expressions of the susceptibility for Ohmic and super-Ohmic spectral densities.

1. Ohmic case

Assuming the Ohmic spectral density (37), and considering the well-known properties of the Hilbert transform, the
expression (A3) leads to

Re[χi(ω)] = �

2
πmγi

{
H
[
�(ω′) ω′e− ω′

ωc

]
(ω) + H

[
�(ω′) ω′e− ω′

ωc

]
(−ω)

}
= �

2
πmγi ω

{
H
[
�(ω′) e− ω′

ωc

]
(ω) − H

[
�(ω′) e− ω′

ωc

]
(−ω)

} + � mγi ωc

= �

2
mγi ω

[
e− ω

ωc �(0, − ω/ωc) − e
ω
ωc �(0,ω/ωc)

] + � mγi ωc, (A4)

where �(0,x) = ∫ ∞
x

t−1e−t dt denotes the incomplete γ function.

2. Super-Ohmic case

Following the same procedure as in the previous section for the super-Ohmic spectral density (38), one obtains

Re[χi(ω)] = �

2ωc

πmγi

{
H
[
�(ω′) (ω′)2 e− ω′

ωc

]
(ω) + H

[
�(ω′) (ω′)2 e− ω′

ωc

]
(−ω)

}
= �

2ωc

πmγi ω
2{H[

�(ω′) e− ω′
ωc

]
(ω) + H

[
�(ω′) e− ω′

ωc

]
(−ω)

} + �mγi ωc

= �

2ωc

mγi ω
2
[
e− ω

ωc �(0, − ω/ωc) + e
ω
ωc �(0,ω/ωc)

] + �mγi ωc. (A5)

APPENDIX B: FLUCTUATING FORCE

In this Appendix we derivate the correlation function of the fluctuation forces associated with the heat baths given in Eq. (21).
Considering the time dependence of these forces, it follows that

1

2
〈{F̂i(t),F̂j (t ′)}〉 = 1

2

N∑
ν,μ=1

giνgjμ

{
〈{x̂iν(t0),x̂jμ(t0)}〉 cos[ωiν(t − t0)] cos[ωjμ(t ′ − t0)]

+〈{x̂iν(t0),p̂jμ(t0)}〉 cos[ωiν(t − t0)]
sin[ωjμ(t ′ − t0)]

mjμωjμ

+ 〈{p̂iν(t0),x̂jμ(t0)}〉 cos[ωjμ(t ′ − t0)]
sin[ωiν(t − t0)]

miνωiν

+〈{p̂iν(t0),p̂jμ(t0)}〉 sin[ωiν(t − t0)]

miνωiν

sin[ωjμ(t ′ − t0)]

mjμωjμ

}
. (B1)

Replacing the identities (5) in Eq. (B1), and applying the Fourier transform, one obtains

1

2

∫ ∫
dt dt ′eiωt eiω′t ′ 〈{F̂i(t),F̂i(t

′)}〉 =
N∑

μ=1

�g2
iμ

miμωiμ

{[
1

2
+ N (ωiμ)

] ∫ ∫
dt dt ′eiωt eiω′t ′ cos[ωiμ(t ′ − t)]

+ Re[M(ωiμ)]
∫ ∫

dt dt ′eiωt eiω′t ′ cos[ωiμ(t + t ′ − 2t0)]

+ Im[M(ωiμ)]
∫ ∫

dt dt ′eiωt eiω′t ′ sin[ωiμ(t + t ′ − 2t0)]

}
.
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To compute the previous integrals we express the trigonometric functions as complex exponentials and introduce the change
of variable t → τ + t ′ in the first integral and t → τ − t ′ in the second and third ones. Second, we use the definition of the δ

function 2πδ(ω) = ∫
dteiωt and the identity 1 + 2Nth(ωiμ) = coth ( �ω

2kBTi
), which lead to

1

2
〈{F̃l(ω),F̃l(ω

′)}〉 = 2πδ(ω + ω′)Im[χl(ω)] coth

(
�ω

2kBTl

)
cosh(2rl)

− 2π�δ(ω − ω′) coth

(
�ω

2kBTl

)
sinh(2rl)Re[eiθl ]

[ ∫ ∞

0
dω̄J̄l(ω − ω̄)e2iω̄t0 −

∫ ∞

0
dω̄J̄l(ω + ω̄)e−2iω̄t0

]

+ 2iπ�δ(ω − ω′) coth

(
�ω

2kBTl

)
sinh(2rl)Im[eiθl ]

[ ∫ ∞

0
dω̄J̄l(ω − ω̄)e2iω̄t0 +

∫ ∞

0
dω̄J̄l(ω + ω̄)e−2iω̄t0

]
, (B2)

with Jl(ω) = ∫
dω̄J̄l(ω − ω̄). Before continuing, we pay attention to the four integrals having an explicit dependence on the

initial time t0. For both the Ohmic and super-Ohmic spectral densities, (37) and (38), the corresponding J̄ decays more rapidly
than 1/ω̄2 at high frequencies. This allows us to use the Riemann-Lebesgue lemma, which states [78]∫ ∞

−∞
f (ω)eiωtdω → 0 as t → ±∞,

for f (ω) an absolutely integrable function in the interval (−∞,∞). As a consequence, only the first term in Eq. (B2) survives
after taking the long-time limit t0 → −∞. The Riemann-Lebesgue lemma has been successfully employed in the study of the
properties of the stationary state for the damped harmonic oscillator [56,59].

APPENDIX C: QUANTUM CORRELATIONS

In the following we briefly describe the computation of the
logarithmic negativity, quantum discord, and the separability
criteria Tκ,n.

1. Logarithmic negativity and quantum discord

The evaluation of the logarithmic negativity (33) requires
the symplectic eigenvalues of the partial transpose V Tj . These
are given by the positive square roots of the eigenvalues of
(−i/�)σ V

Tj

ij [66], which are given in terms of the so-called
symplectic matrix,

σ =
[

0 I2

−I2. 0

]
,

where In is the n-dimensional unit matrix. The corresponding
partial transpose matrix is obtained from V

Tj

ij = �V ij�, with

� = I2 ⊕
[

I1 0

0 −I1

]
.

As previously mentioned, the evaluation of the quantum
discord (34) on the state ρ̂ij involves an optimization procedure
over all POVMs on the j mode, denoted by �

(j )
l . In Eq. (36),

pl = Trij [ρ̂ij�
(j )
l ] is the probability associated with the

lth measurement outcome, and ρ̂
(l)
i = Trj [ρ̂ij�

(j )
l ]/pi is the

corresponding postmeasurement reduced state of the i mode.
Restricting the optimization procedure to Gaussian POVMs,
an explicit formula providing D←(ρ̂ij ) for any input Gaussian
state ρ̂ij is given in Refs. [64,65]. This quantity is widely
known as Gaussian discord, and, in general, it is an upper
bound of the actual quantum discord. However, in Ref. [70]
was shown that both quantities coincide for a broad class
of Gaussian states. D→(ρ̂ij ) can be obtained from a similar
optimization procedure on the POVMs in the subsystem i.

Both evaluations of discord may return different values (i.e.,
D← 	= D→).

2. Separability criteria Tκ,n

Now we describe a hierarchy of separability criteria recently
proposed to characterize from genuine multipartite to bipartite
entanglement [69]. According to this proposal, the state ρ̂ of
a n-partite system is κ-partite entangled, i.e., there is at least
an entangled subsystem composed of κ parties, provided that
a given function τκ,n(ρ̂) takes a positive value.

The evaluation of the function τκ,n involves the selection
of a set of 2n pure states that allows us to assess multipartite
entanglement. The important point is that a reliable charac-
terization of entanglement requires an appropriate choice of
such probe states. However, a priori there is no information
about the “optimal” probe states that enable us to unveil the
entanglement encapsulated by an arbitrary density operator
ρ̂. One may circumvent this difficulty by carrying out an
optimization procedure over all possible selections in order
to obtain the maximum of τκ,n, whose positive value would
reveal the entanglement in the system. We denote Tκ,n as such
a maximum.

In continuous-variable states a Gaussian selection of the
probe states provides a readable expression of τκ,n [68], which
can be optimized with standard procedures and which is strong
enough to detect entanglement for a broad class of Gaussian
and non-Gaussian states. In the Gaussian case this expression
reads [68]

τκ,n(ρ̂)= e
−2XT JT

n
1

�−1+V−1 Jn X

√
det (� + V )

−
∑

j

a
(κ,n)
j

e− 1
2 XT (Pj )T 1

�+V Pj X

√
det (� + V )

,

(C1)

where a
(κ,n)
i are constant values [69], X is a real 2n vector,

Jn is the standard form of the so-called symplectic matrix,
and P j and � are 2n × 2n real matrices. The objects X and
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� denote a compact form of the first and second moments of
the probe states [68]. Hence, the detection of entanglement
consists basically in optimizing Eq. (C1) over the variables X

and �, i.e.,

Tκ,n(ρ̂) = max
X,�

τκ,n(ρ̂).
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