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Abstract
WefollowKofler andBrukner (2007Phys. Rev. Lett.99180403) in studying the conditionsunderwhicha
classical picture emerges from the results ofnot too accuratequantummeasurementsmadeon large
macroscopic objects.We show that for suchobjects, consistingof a largenumberofmicroscopic elements
obeyingquantum laws, theCentral Limit theoremguarantees the existenceof classical values for collective
variables, even if the correspondingoperatorsdonot commute.Owing to localisationof theoverallwave
function in any chosen representation, these values canbemeasured to a small relative errorwithout
significantly altering the stateof theobject.We studya simplemodel,which includes a rudimentaryobserver
capable ofdetecting in the coordinate space thepositionof amacroscopicpointer. Thepointer canbe
employed tomeasure suchquantities, notdirectly accessible to theobserver, as linear or angularmomenta.
Apurely classical picture arises provided themeasurements aremadeonmacroscopic objects.Results of
measurements,madeon small quantumobjects, cannot bepredictedwith certainty, but acquire certain
objectivitywhenencoded inmacroscopicpointers’positions accessible to all observers.Our estimates show
that the classical conditions could, inprinciple, be realised for systemswithnumberof constituent parts of
theorderof theAvogadro constant. It is possible that the approach captures the essential features of the
quantum-to-classical behaviour, although its extension tomore realistic systems is likely tobe required.

1. Introduction

The old question of how, andwhere, quantumproperties of themicro-world turn into classical-like experiences
of an experimentalist continues to date without a definite answer. In quantumphysics, one can observe certain
outcomeswhose probabilities are supplied by the theory. Calculation of these probabilities (frequencies)
requires a recourse to complex valued probability amplitudes, or wave functions, whose precise status is still
debated in the literature (see, for example, [1]). Seen by some as a purelymathematical tool, the amplitudes are
pervasive in the theory, and their values can sometimes be divulged from the observed frequencies [2].
Moreover,measurement of a particular quantity perturbs themeasured system, so that two quantities, whose
operators do not commute, cannot havewell defined simultaneous values.

Classical physics, by its very nature a limiting case of quantum theory, knows nothing of thementioned
difficulties. It postulates a unique verifiable outcome for each observation and, since classical observations do
not disturb themonitored system, ascribes definite simultaneous values to all quantities.

Different schools approach the problem fromdifferent perspectives. For example, the standardCopenhagen
interpretation of quantummechanics (for a review see [3], and references therein) relies on the ‘Heisenberg cut’,
a hypothetical interface between quantum events and theObserver’s information. The consistent histories
approach (see [4] and references therein) purports to define probabilities for a closed quantum system, and
reserves no special role for anObserver. Observer’s role is at best passive [5] in the Everett’smany-world
interpretation ([6], and references therein). Similarly, Bohmian quantummechanics denies theObserver any
role in the formulation of the physical picture of theworld (see [7], and,more relevant to our discussion, [8]).
Detailed arguments for and against these suggestions are beyond the scope of this paper, and can be found
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elsewhere in the literature. It is fair, however, to say that none of the above approaches have yet provided a
definite answer to the quantum-to-classical question.

In 2007Kofler and Brukner demonstrated thatmacro realism and the classical laws ofmotion emerge from
the standard quantum formalism, provided themeasurements,made on large systems, are coarse-grained, i.e.
limited in their accuracy [9]. Their workwas preceded by the one of Lloyd and Slotine, who showed that
imprecise (weak)measurementsmade on a set of identical systems can determine the properties of an individual
systemwhile affecting it only slightly [10]. It is therefore plausible, that a classical picture could emerge from
quantumdescription, provided theObserver limits him/her/itself to studying only a certain class of classical
phenomena, using only certain types of classical instruments. Let usmention thatmeasurements and their
classical limit have also been discussed in several works, see for instance [11, 12] including semiclassical
approaches that show that thefine structure of quantumprobability distributions cannot be resolved for a
macroscopic object and can therefore be discarded [13, 14].

In this paperwewill follow both of the previous references in looking for away to recover the classical picture
fromquantumproperties, by analysing the observation (measurement) procedures offered by quantum
mechanics.More precisely, the classicality wewant to study relies in the following assumptions:

(A) Provided a system is large enough, there exist measurements yielding a unique classical value, if not exactly,
thenwith a vanishing relative error.

(B) Allmacroscopic quantities should havewell defined classical values, in the sense of the above.

(C) The disturbance produced on the measured system should be if not exactly zero, then small enough for the
nextmeasurement of any different quantity to produce its ownunique classical result.

(D) The result of any measurement can be encoded into the spatial position of a classical pointer, which can be
‘read’ by any number ofObservers, without altering its state, or altering it only by a negligible amount.

With this inmind, wewill carefully examine different situations involving a quantum systemor systems, one
or several quantumpointers and, eventually, rudimentary externalObservers. In particular, wewill evoke a
simplemodel similar to that used in [9, 10], and studywhat happens if anObserver restricts him/her/itself to
monitoring only large conglomerates of non-interacting elementary quantum systems, bymeans of
instruments, whose pointers are composites of quantumparticles considered in the coordinate representation.
Wewill also consider the case where anObserver can access the information about an elementary quantum
system, encoded into the position of a largemacroscopic pointer. Inmost cases we evaluate the change,
produced by an observation on the system’s state, and estimate its effect on the result on a subsequent
measurement of a different variable.

Amore detailed layout of the paper as follows. In section 2we briefly review the basic elements ofQuantum
measurement theory, used throughout this work. In section 3we look at the classical picture, which emerges
when a large set of equally polarised spin-1/2 particles, ismonitored by an equally large set of quantumpointers.
In section 4we apply theCentral Limit theorem (CLT) tomeasurements of collective additive quantities, and
relate the emergence of ‘classical values’, to the localisation of the composite’s wave function in the chosen
representation. As an illustration, in section 5we examine the case inwhich a large number of spin-1/2 particles
aremonitored by a single quantumpointer.We evaluate the damage to the composite’s quantum state done by a
measurement, and its consequence for a followupmeasurement of a different total spin’s component. Section 6
describes a similar study, this time of a large number of non-relativistic quantumparticles, prepared in the same
state. A classical picture is recovered formeasurements resolutions, which ensure sufficiently accurate
simultaneous values of the composite’s centre ofmass (COM) and its totalmomentum. In section 7we let the
cloud of particles be split after a collisionwith a potential barrier, and obtain a similar classical picture for its
transmitted part only. In section 8we add a ‘rudimentaryObserver’, who’s primitive sensor allows him/her/it
detect (‘see’, see the assumptionDof the Introduction) position of theCOMof a large cloud of particles, which
plays the role of a classical pointer. The sensor is taken to be a single pointer, capable of coupling tomacroscopic
objects, andwhose displacement encodes the value of themeasured quantity.We need tomodel theObserver of
the system-device-observer sequence in oneway or another, and this way is certainly the simplest. In section 9
such a pointer is used to perform ameasurement of a component of a single spin-1/2. In section 10we askwhat
would be theObserver’s experience, after looking at a classical pointer, previously prepared in a superposition of
spatially separatedmacroscopic states. In section 11we recover the classical limit of themeasurement theory, by
considering a large angularmomentum,monitored by amacroscopic pointer. In section 12we look for
observations, whichmight convince anObserver that the classical picture, hitherto perceived, is, after all, only an
approximate one.We present our conclusions in section 13. Appendices A andB discuss certain technical
points.
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2.Quantummeasurements

Ourmain tool will be a standard vonNeumannmeasurement [15–17], whichwewill nowbriefly review.
Supposewe set out tomeasure an operator Â, with eigenstates ñn∣ , and eigenvaluesAn, in aHilbert space of
dimensionN. If only J N eigenvaluesAj are distinct, we canwrite

å å p p p p d= ñ á = =
= =

¢ ¢A n A n A , , 1
n

N
n

j

J

j j j j j jj
1 1

ˆ ∣ ∣ ˆ ˆ ˆ ˆ ( )

where pjˆ projects onto the subspace corresponding to anAj. At t=0, we couple the system in a state Y ñ0∣ to a
pointer, amassive particle with position f andmomentumλ, via a brief yet strong interaction (weput = 1),

l d=H g A t 2intˆ ˆ ˆ ( ) ( )

(g being the coupling strength), and determine the pointer’s position (reading) once the interaction is over. The
initial state of the composite system+pointer is a product F ñ = Y ñ ñG0 0∣ ∣ ∣ , òñ = ñG fG f fd∣ ( )∣ . In the following
wewill considerG( f ) a real function, peaked around f=0, where its width,Δ f, will determine the resolution of
themeasurement. It is convenient towrite the system’s state Y ñ0∣ as a superposition of orthonormal states ñj∣ ,
j=1, 2, .., J, dá ¢ ñ = ¢j j jj∣ , corresponding to the valuesAj,

å p

p p

Y ñ= áY Y ñ ñ

ñº áY Y ñ Y ñ ñ = ñ

=

-

j

j A j A j

,

, . 3

j

J

j

j j j

0
1

0 0
1 2

0 0
1 2

0

∣ ∣ ˆ ∣ ∣

∣ ∣ ˆ ∣ ˆ ∣ ˆ ∣ ∣ ( )

This formoffers several advantages. Firstly, it is easy to check that the state of the composite system+pointer
immediately after the interaction, F ñ1∣ , and the resulting probability distribution of the pointer’s readings, ρ( f ),
take particularly simple forms

å åp r pá F ñ= - áY Y ñ ñ = áF ñá F ñ = - áY Y ñ
= =

f G f A j f f f G f A, , 4
j

J

j j
j

J

j j1
1

0 0
1 2

1 1
1

2
0 0∣ ( ) ∣ˆ ∣ ∣ ( ) ∣ ∣ ( ) ∣ˆ ∣ ( )

wherewe have chosen the units so as to put the coupling strength g in equation (2) to unity.
Secondly, it helps to visualise the damagewhich ameasurement does to the state of themeasured system.

Indeed, if the pointer reads f, the state á F ñf 1∣ differs from Y ñ0∣ only if the factorsG( f−Aj) differ between
themselves. Having allGʼs identical, e.g.G( f−Aj)≈G( f ), would only result in appearance of an unimportant
overall factor á F ñ = Y ñf G f1 0∣ ( )∣ . Thirdly, writing

åp = ñD - á
=

n A A n , 5j
n

N

j
n

1

ˆ ∣ ( ) ∣ ( )

whereΔ (X−Y)=1 ifX=Y, and 0 otherwise, we note that in equations (4), the factor

åpáY Y ñ = á Y ñ D -
=

n A A 6j
n

N

j
n

0 0
1

0
2∣ ˆ ∣ ∣ ∣ ∣ ( ) ( )

is just the total probability offinding the resultAj in an ideally accuratemeasurement of Â, dG f f2∣ ( )∣ ( ).
This will let us apply theCLT [18] in themost interesting for us case of ameasurementmade on a large set of
identical quantum systems.

The results are readily generalised tomeasuring an operator with a continuous spectrum (see appendix A),
wherewe have (δ (z) is theDirac delta)

ò n n n n n d n n= ñ á á ¢ñ = - ¢nA Ad , , 7ˆ ∣ ∣ ∣ ( ) ( )

ò
ò

p

p n n d n

á F ñ= - áY Y ñ ñ

= ñ - án

f a G f a a a

a A a

d ,

d , 8

1 0 0
1 2∣ ( ) ∣ˆ ( )∣ ∣

ˆ ( ) ∣ ( ) ∣ ( )

and

p p

d

ñ º áY Y ñ Y ñ

á ¢ ñ = - ¢ ñ = ñ

-a a a

a a a a A a a a

,

, . 9

0 0
1 2

0∣ ∣ ˆ ( )∣ ˆ ( )∣
∣ ( ) ˆ ∣ ∣ ( )

Finally, the results of this section are easily generalised to a system, initially in amixed state given by a convex
sumof one-dimensional projectors.Wewould only need to apply the above analysis to each term, and then add
the results, as appropriate.
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2.1. A followupmeasurement
Immediately after obtaining a reading f for the operator Â in (7)wemay decide tomeasure a different operator

ò m m m= ñ ámB Bd , 10ˆ ∣ ∣ ( )

using a second pointer with position ¢f , prepared in a state ¢ñG∣ . For thefinal state of the system+ two pointers,
F ñ2∣ , wefind

ò p pá ¢ á F ñ = ¢ - - Y ñf f b a G f b G f a b ad d , 112 0∣ ∣ ( ) ( ) ˆ ( ) ˆ ( )∣ ( )

with òp m m d mº ñ - ámb B bdˆ ( ) ∣ ( ) ∣. Now the joint probability distribution for the readings f and ¢f is given by

ò
ò

r

p p p

¢ = áF ñ ¢ñá ¢ á F ñ = ¢ ¢ -

´ ¢ - ¢ - áY ¢ Y ñ

f f f f f f b G f b

a a G f a G f a a b a

, d

d d . 12

2 2
2

0 0*

( ) ∣ ∣ ∣ ∣ ( )

( ) ( ) ∣ˆ ( ) ˆ ( ) ˆ ( )∣ ( )

Wewill always assume that the pointers are prepared in real valuedGaussian states of awidthΔ f, andD ¢f ,
respectively. For example, for the first pointer wewrite

p= D - D-G f f f f2 exp 4 , 132 1 4 2 2( ) ( ) ( ) ( )

whereΔ f determines the accuracy (resolution) of themeasurement, which is accurate (‘strong’)whenΔ f is
small, and inaccurate (‘weak’)when it is large.

Thefirstmeasurement cannot be affected by the second one (see, for example, [19]), and its readings are
distributed according to

ò òr r p= ¢ ¢ = - áY Y ñf f f f a G f a ad , d . 142
0 0( ) ( ) ( ) ∣ˆ ( )∣ ( )

In general, the secondmeasurement’s results are notwhat theywould have been, had the firstmeasurement not
beenmade

ò ò
ò

r r

p p p

¢ = ¢ = ¢ ¢ -

´ ¢ - - ¢ D áY ¢ Y ñ

f f f f b G f b

a a a a f a b a

d , d

d d exp 8 , 15

2

2 2
0 0

( ) ( ) ( )

[ ( ) ] ∣ˆ ( ) ˆ ( ) ˆ ( )∣ ( )

andwould reduce to ò p¢ ¢ - áY Y ñb G f b bd 2
0 0( )∣ ∣ ˆ ( )∣ only if the operators Â and B̂ commute,

p p = =a b A B, , 0[ ˆ ( ) ˆ ( )] [ ˆ ˆ] , or if the exponential in the rhs of (15) can be put to unity. This illustrates thewell
known fact thatmeasurements of quantities such as different components of a spin, or of the particle’s position
andmomentum,must perturb each other. If wewish to recover the classical picture, avoiding this perturbation
should be ourfirst priority.

3.Many spins, and asmany quantumpointers

Ourfirst attempt at recovering the classical picture, outlined in the Introduction, will involve K 1 spin-1/2
systems, all polarised along the z-axis, so the initial state of thewhole set is given by the product

Y ñ =  ñ
=

z k, . 16
k

K

0
1

∣ ∣ ( )

Together, the spins amount to an angularmomentum so large (in units of ), that we expect it to exhibit certain
classical properties. In particular, we should be able tomeasure its component on any chosen axis to a good
accuracy. In addition, successivemeasurements along various axis should not be affected by their predecessors.

Wewill also assume that we dispose ofK vonNeumann pointers, with the positions fk, k=1,K,K, all
prepared in identical Gaussian states of awidthΔ f, each coupled to one of the spins, and all enacted at the same
time, as illustrated infigure 1.

Let thefirstmeasurement be along a direction f q=n ,( )
, making anglesf and θwith the x- and z-axes,

respectively. The kth pointermeasures (up to a factor of 1/2) the kth spin’s component along the chosen axis, the
measured operator Ak

ˆ has eigenvaluesA1,2=±1, and is given by

=  ñá  -  ñá  =  ñá  -A n k n k n k n k n k n k, , , , 2 , , 1, 17k
ˆ ∣ ∣ ∣ ∣ ∣ ∣ ( )     

where  ñn∣ 
and  ñn∣ 

are the spin states aligned up and down a direction n

, respectively and 1 is the identity. In

particular, we have
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f

f

 ñ=  ñ + -  ñ

 ñ= - -  ñ +  ñ

n k w z k w z k

n k w z k w z k

, , 1 exp i , ,

, 1 , exp i , , 18

∣ ∣ ) ( )∣
∣ )∣ ( )∣ ( )




where qºw cos 22( ), and

f

 ñ=  ñ - -  ñ

 ñ= -  ñ +  ñ -

z k w n k w n k

z k w n k w n k

, , 1 , ,

, 1 , , exp i . 19

∣ ∣ )∣
∣ [ )∣ ∣ ] ( ) ( )

 
 

3.1. TheCLT
After allmetres havefired, wewill have a set of K 1 pointer readings, ¼f f f, , , K1 2{ }, whichwewill use to
construct a singlemacroscopic variable

å=
=

f f . 20
k

K

ktot
1

( )

Since the pointers are independent, by theCLT [18], the probability tofind a reading ftot, will tend to a normal
distribution

r p s
s

s -
- á ñ

º á ñ¥
- f K

f K f

K
f K f K2 exp

2
, , 21K f

f
ftot

2 1 2 tot
2

2 tot
2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )

( )
( ∣ ) ( )

where qá ñ =f cos and s q= D +f sinf
2 2 1 2( ) are themean and the standard deviation (SD) of each individual

measurement, respectively. Thus, the distribution ρ( ftot) is centred atK times the average of Â in the state  ñz∣ ,
and has a SD K times larger than it would be for just one of the fkʼs. Since the SD growswithKmuch slower
than the largest possible value of the projection,K, we can have a good ‘classical’measurement, provided

qD +K f Ksin2 2 1 2( )  , or if (we remind the reader that = =g 1)

Df K . 22( )

3.2. The followupmeasurement
In order for the classical picture to emergewe need to show that it is possible to choose an accuracy of each
individual pointer,Δ f, good enough to obtain the expected classical result, qK cos , yet poor enough to allow for
a subsequent evaluation of the total spin’s projection along a different direction, f q¢ = ¢ ¢n ,( )

, yielding the
correct result q¢K cos with a negligible error.

Let operators

=  ¢ ñá  ¢ -  ¢ ñá  ¢ =  ¢ ñá  ¢ -B n k n k n k n k n k n k, , , , 2 , , 1, 23kˆ ∣ ∣ ∣ ∣ ∣ ∣ ( )     

bemeasured after the Ak
ˆ ʼs in equation (17) to a new accuracyD ¢f .We need to perturb each spin only slightly,

and should chooseDf 1 . Then, expanding the exponentials in equation (15), for themean reading of each
pointer we have

Figure 1.A set of K 1 spin-1/2, all polarised along the z-axis, amount to a large angularmomentumK/2 (in units of ), directed
along the axis. Coupling quantumpointers, one to each spin, allows one to determine any projection of the total spin to a negligible
relative error, and almost without perturbing the spins’ state.

5
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q

s q

á ¢ñ ¢ + D

D ¢ + ¢ + D ¢ D¢

f O f

f O f f

cos 1

sin . 24f

2

2 2 2 2 2

( )
( ) ( )




For the newmacroscopic variable, ¢ º å ¢=f fk
K

ktot 1 , application of theCLT yields

q

s q

á ¢ ñ ¢ + D

¢ D ¢ + ¢ + D ¢ D

f K O f

f K f O f f

cos 1 ,

sin . 25
tot

2

2
tot

2 2 2 2

( ( ))

( ) (( ) ( )) ( )





Thus the condition

D D ¢f f K1 , 26( ) 

allows us to have two goodmeasurements of the total spin components along n

and ¢n


, such that

qá ñf K costot  , qá ¢ ñ ¢f K cos
tot

 , and s sá ñ ¢ á ¢ ñf f f f K1 1tot tot tot tot
( ) ( )   . Note that the second

measurement will leave the systemonly slightly perturbed, and ready for the nextmeasurement along some new
direction ¢¢n


. In this sense the classical picture is recovered.

3.3. An estimate
As an illustration, we evaluate the odds onmeasuring the x-component, (f=0, θ=π/2), of the total spin to a
good accuracy, and stillfind it polarised along the z-axis, (f q¢ = ¢ =0, 0), if the secondmeasurement ismade.
Evaluation of the scalar products in equation (15), for the distribution of the second pointer’s readings yields

r ¢ = ¢ ¢ - + - D + ¢ ¢ + - - Df G f f G f f1 1 exp 1 2 2 1 1 exp 1 2 2. 272 2 2 2( ) ( )( [ ]) ( )( [ ]) ( )

Thus, we have

s

á ¢ ñ = - D

¢ = D ¢ - - D +

f K f

f K f f

exp 1 2

exp 1 2 1 . 28
tot

2

2
tot

2 2

[ ]

( ) ( [ ] ) ( )

For amacroscopic samplewe expect thenumberof spins tobeof order of theAvogadronumber,K≈1024.Choosing
Δ f=103 guarantees that thefirstmeasurementwould yield á ñ =f 0tot , with a SD s » D ~f K f2tot( )
1015,which is 109 times smaller than the typical total spin sizeK. The secondmeasurementwill yield ameanvalue
whichdiffers fromK=1024 by a factor of the order 1018, or only by about 0.0001%of themeasured value. The
spreadof the readings ¢f around themean, not affectedby thefirstmeasurement, is determinedonly by the accuracy
of the second set of pointers,D ¢f .

3.4. A brief summary
So far, we have described a procedure which transfers the information about the total spin (magneticmoment)
of a simplemulti-spin system to an ensemble of quantumpointers. The value of the total spin’s projection onto
an arbitrary axis can then be accurately deduced from the pointers’ readings without seriously affecting the state
of the spins. Please note certain similarity with the so-calledweakmeasurements [2, 20]. Having achieved the
goals (A), (B) and (C) of ourwish list in the Introduction, we havemade little progress on the (D). It is not clear
how an individual pointer could be ‘read’, as thismight require anothermeasuring device to observe the pointer,
and yet another device towatch the first device, and so on. Also, the necessity to have 1024 individual pointers, is
in itself prohibitive. These problems can be remedied, at least to some extent, by considering the so-called
collectivemeasurements [10], where the information about amacroscopic property of a system is passed to a
single pointer.

4. Collectivemeasurements. Localisation of thewave function

Nextwe follow [9, 10], and consider a composite of K 1 N-dimensional quantum systems, all prepared in the
same state yñ∣

 yY ñ = ñ
=

. 29
k

K

k0
1

∣ ∣ ( )

Our aim is tomeasure the total value of a quantity represented, for each system, by the same operator Â (see
equation (1))

å=
=

A A , 30
k

K

ktot
1

ˆ ˆ ( )

where the subscript k refers to a particular system. The eigenstates of Atot
ˆ are the products ñ º ñ ñ ñn n n n... K1 2∣ ∣ ∣ ∣ ,

corresponding to the eigenvalues å = Ak
K n

1
k, ñ = å ñ=A n A nk

K n
tot 1

kˆ ∣ ∣ . Out ofNK eigenvalues of Atot
ˆ only J NK

will be different, andwe denote them as Aj
tot. It is readily seen that  KA A KAjmin

tot
max, whereAmin and
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Amax are the smallest and the largest eigenvalues of Â, respectively. As shown in section 2, the state of the
composite after obtaining a reading f is

å

å å

p

p p

p

á F ñ= - áY Y ñ ñ

ñº áY Y ñ Y ñ

= ñD - á

=

-

¼ = =

f G f A j j

j j j

j n A A n

,

, 31

j

J

j K

K K

K
n n

N

j
k

K
n

1
1

tot
0 0

1 2

0 0
1 2

0

, , 1

tot

1K

k

1

⎛
⎝⎜

⎞
⎠⎟

∣ ( ) ∣ˆ ( )∣ ∣

∣ ∣ ˆ ( )∣ ˆ ( )∣

ˆ ( ) ∣ ∣ ( )

where, as before, dá ¢ ñ = ¢j j jj∣ .
We are interested in the structure of the coefficientsmultiplying the states ñj∣ , and recall that

å  åp yáY Y ñ = á ñ D -
¼ = = =

j n A A 32K
n n

N

k

K

k k
k

K
n

j0 0
, , 1 1

2

1

tot

K

k

1

⎛
⎝⎜

⎞
⎠⎟∣ ˆ ( )∣ ∣ ∣ ∣ ( )

is just the probability that the sumofK independent variables equals Aj
tot. Thus, in the limit K 1 the CLT

predicts that

p p s
s

áY Y ñ -
- á ñ

-j K
A K A

K
2 exp

4
, 33K A

j

A
0 0

1 2 2 1 4
tot 2

2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∣ ˆ ( )∣ ( )

( )
( )

where

å åy s yá ñ º á ñ º á ñ - á ñ
= =

A A n A n A, 34
n

N
n

A
n

N
n

1

2 2

1

2 2 2∣ ∣ ∣ ( ) ∣ ∣ ∣ ( )

are themean and variance of the operator Â in the individual state yñ∣ . Notably, since theCLTholds for an
arbitrary individual distribution, equation (33) is valid for any choice of Â and yñ∣ .

The case of an operator with a continuous spectrum can be treated similarly, wherewe obtain

ò

ò å

p s
s

p p

p n n d n

á F ñ - -
- á ñ

ñ

ñº áY Y ñ Y ñ

= ñ - án

-

-

=

f K a G f a
a K A

K
a

a a a

a A a

2 d exp
4

,

,

d , 35

A
A

K K

K
k

K

1
2 1 4

2

2

0 0
1 2

0

1

k

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

∣ ( ) ( ) ( ) ∣

∣ ∣ ˆ ( )∣ ˆ ( )∣

ˆ ( ) ∣ ∣ ( )



with ò òn nº  =d dk
K

k1 , and n nñ º  ñ=k
K

k1∣ ∣ . Themean á ñA and the variance sA
2 are still given by

equations (34), but with the sums replaced by integrals, ò nå  dn .

Equations (31)–(35) are ourmain result so far.With the states ñj∣ and ña∣ appropriately normalised, we can
say that thewave function is ‘localised’ in the region of width~ K around a ‘macroscopic’ value á ñK A , with
negligible contributions from the ñj∣ and ña∣ outside this region. Thus, it is possible to choose ameasurement’s
accuracyΔ f small enough for the error, relative to the typical large value of themeasured quantity, to be small,
D -f K A Amax min( ) . At the same time, it is possible to haveΔ f large enough forG( f ) to be practically
constant for all important states in the decompositions (31) or (35), sDf K A .With the state of the
composite systembarely changed, the system is ready for the next collectivemeasurement, not affected by the
previous ones. In summary, we can have a good (accurate) classicalmeasurement, provided

s D -K f K A A . 36A max min( ) ( ) 

Themeasurement is ‘classical’,firstly, because its single realisation yields the classical value with a negligible
relative error and, secondly, because its back action on themeasured system is negligible aswell. The localisation
property of awave function, describing a large conglomerate of non-interacting components,must hold in every
representation, and for all additive quantities. Our ability to assign to amacroscopic system in a quantum state a
set of ‘objectively existing’ classical values signals, therefore, return to the classical picture.

5.Many spins, and only one quantumpointer

Nextwe apply the approach of the previous section to ameasurement of the component of the total spin along a
direction n


, for a system in the state (16), seefigure 2. The corresponding operator (up to a factor of 1/2) is given

by
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å å= =  ñá  -
= =

A A n k n k2 , , 1. 37
k

K

k
k

K

tot
1 1

ˆ ˆ ∣ ∣ ( ) 

There areK+1 eigenvalues = -A j K2j
tot , j=0, 1,K,K. pKˆ ( j) projects onto a subspace spanned by all

possible products of the states  ñn∣ 
and  ñn∣ 

, containing precisely j states  ñn∣ 
. There are =Cj

K

-K j N j! !( )! such products, qá   ñ =z n cos 2∣ ( )
, and qá   ñ =z n sin 2∣ ( )

. Usingwell knownproper-
ties of the binomial distribution [21], we obtain for K 1

p q q q qáY Y ñ = - ¥
j C j K Kcos 2 sin 2 cos 2 , sin 4 . 38K j

K j K j
K

0 0
2 2 2 2∣ ˆ ( )∣ [ ( )] [ ( )] ⟶ [ ∣ ( ) ( ) ] ( )( )

Since = +j A K 2j
tot( ) it follows that

åp q
q

q
á F ñ - -

-
ñ-

=

f K G f A
A K

K
j2 sin exp

cos

4 sin
, 39

j

K

j
j

1
2 1 4

0

tot
tot 2

2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∣ ( ) ( )

( )
∣ ( )

where dá ¢ ñ = ¢j j jj∣ , see figure 3.Note that equation (39) can be obtained directly from equations (31)–(33), by
noting that

q s qá ñ = á   ñ = = - á ñ =A z A z Acos , 1 sin . 40A
2∣ ˆ ∣ ( )

For aGaussian pointer (13), evaluation ofGaussian integrals yields for the distribution of the readings

r p q
q

q
= D + -

-
D +

-f f K
f K

f K
2 sin exp

cos

2 sin
. 412 2 1 2

2

2 2

⎡
⎣⎢

⎤
⎦⎥( ) [ ( )] ( )

( )
( )

Thus, for the number of spins sufficiently large, there aremany possibilities to realise a ‘classical’measurement,
as described in the previous section. Indeed, withD ~ +f K 1 2( ) , 0<ò<1we achieve, as  ¥K ,

q D =K f A K2 sin . 42max∣ ∣ ( ) 

More precisely, if onewritesK=10n then n and ò satisfy

a a+ + = n n n2 , log 2 . 4310( ) ( )

For instance, considering a numberK=108 (n=8) of particles, one can set ò=(α+n)/2n, that yieldsΔ
f∼106 and ~K2 104. Hence, all quantities involved in equation (42) differ by two order ofmagnitude.

5.1.Damage to the initial state
It is easy to assess the damage done to the state Y ñ0∣ , provided the pointer reads f. A convenientmeasure of the
change produced by themeasurement is the normof the difference between Y ñ0∣ and the properly normalised

final state rá F ñf f1∣ ( ) (recall that r = á F ñáF ñf f f1 1( ) ∣ ∣ ),

å p
r

º áY Y ñ -
-

=

f j
G f A

f
Err 1 . 44

j

K

K
j

0
0 0

tot 2 1 2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( ) ∣ˆ ( )∣

( )

( )
( )

Replacing the sumover j by an integral ò-¥

¥
Ad tot, evaluating several Gaussian integrals, and taking the limit

qDf K2 sin , wefind

Figure 2.A collectivemeasurement. Coupling a single quantumpointer to each one of theK spins also allows one to determine any
projection of the total angularmomentum to a negligible relative errorwhile leaving the state of the spins virtually intact.
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r p
q

q
q

D -
-

D

= - -
-

D

-f f
f K

f

f
f K

f K

2 exp
cos

2
,

Err 2 1 exp
cos

4 2 sin
, 45

2 1 2
2

2

2

2 2

1 2

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟

( ) ( ) ( )

( ) ( )
( )

( )



with the secondGaussian in equations (45)much broader than the first one, and Err( f )will stay close to zero for
all readings f, which are likely to occur in themeasurement. Thus,

D ~ < <+ f K , 0 1 2, 461 2 ( )( )

would be a suitable choice, provided the number of spins,K, is sufficiently large. Indeed, we obtain
Err( fr)=r<1, provided the pointer reads q q=  D - +f f K r K4 2 sin ln 1 2 cosr

2 2 1 2( )∣ ( )∣ . Now the
probability to have an error greater than r is (adding a factor of 2 for the two tails of theGaussian)

ò r
q q

p
= =

-

D D -
-

¥ q
D

 r f f
f K

f

K

f r

r
Prob Err 2 d erfc

cos

2

sin

2 ln 1 2
1

2
, 47

f

r
2 1 2

2

r

f

K

4 2

sin2⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( )

∣ ( )∣
( )

which duly tends to zero as qD  ¥f K sin .

Figure 3. (A) Localisation of thewave function. Coefficients,multiplying the states ñj∣ in equation (3) in the expansion of the state (16)
forK=3×104 spins, all polarised along the z-axis. a) If the projection at θ=π/3 ismeasured. Also shown (dashed) is the function

-G f Aj
tot( ). A reading f is probable if -G f Aj

tot( ) overlapswith the region of support of thewave function. (B)The same than figure
(A) for θ=π/2.
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5.2. The followupmeasurement
Nextwewant to look for a regime inwhich ameasurement of the total spin’s component

å=  ¢ ñá  ¢ -  ¢ ñá  ¢
=

B n k n k n k n k, , , , , 48
k

K

tot
1

ˆ [∣ ∣ ∣ ∣] ( )   

on a different direction f q¢ = ¢ ¢n ,( )
will not be affected by previouslymeasuring it along f q=n ,( )

. The
corresponding distribution r ¢f( ) is now given by a discrete sum (see equation (15))

å år p p p¢ = ¢ - áY ¢ Y ñ ´ -
-
D= ¢=

¢f G f B m j m
A A

f
exp

8
, 49

j

K

j
m m

K

K K K
m m

0

2 tot

, 0
0 0

tot tot 2

2

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ∣ˆ ( ) ˆ ( ) ˆ ( )∣ ( ) ( )

where = -A m K2m
tot , = -B j K2j

tot , and the projectors p mKˆ ( ), p ¢mKˆ ( ) and p jKˆ ( ), for Atot
ˆ and Btot

ˆ ,
respectively, are defined in equations (31). Calculation of r ¢f( )with the help of equation (15)would require
evaluation of numerous scalar products, andwewill ask a simpler question instead. As in section 3.3, wewill try
tomeasure the z-component of the total spin, with andwithoutmeasuring of Atot

ˆ first.With nomeasurement of
Atot
ˆ made, only oneGaussianwill be present in the sum (49)

r ¢ = ¢ -f G f K , 502( ) ( ) ( )

since Y ñ0∣ is the eigenstate of Btot
ˆ , Y ñ = Y ñB Ktot 0 0

ˆ ∣ ∣ .With themeasurement of Atot
ˆ made, for the coefficient

multiplying ¢ -G f K2( ) in the sum (15)wehave

ò

å p p

p q
q
q

q
q

q
q

áY ¢ Y ñáY Y ñ - - D

»
¢

-
-

-
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-
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D

= + D -
D
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¢

-

j j A A f
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A K

K
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exp 8

d d

2 sin
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2 sin
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2 sin 8

1 sin 2 1
sin

4
, 51

j j

K

K K j j
, 0

0 0 0 0
tot tot 2 2

2

2

2

2

2

2

2

2 2 1 2
2

2

⎡
⎣⎢

⎤
⎦⎥

∣ ˆ ( )∣ ∣ ˆ ( )∣ [ ( ) ]

( ) ( ) ( )

( ) ( )

which tends to unity forDf K .We, therefore, have a condition for a good classicalmeasurement of any
projection of the system’s total spin (see equations (42))

DK f K , 52( ) 

easily satisfied for K 1 .

5.3. An estimate
Tomake our arguments plausible, we need to checkwhether this section’s simplemodel is at least in the right
ballpark. TheAvogadro constant,NA≈6×1023 is a reasonable estimate for the number of constituent parts of
a ‘macroscopic’ object, andwewill use it throughout the rest of the paper.

In the previous example, forK∼1024, themaximum size of the total spin (in units of ) is of order of 1024.
For the ‘characteristic size’ of the spin state from (39)wehave

q ~K2 sin 10 . 5312 ( )

ChoosingΔ f a thousand times larger,Δ f∼1015, guarantees a goodmeasurement of the x-component (see
equations (42))

sá ñ = D ~f f f K0, 10 . 5415( ) ( ) 

Themeasurement is not likely to change the state of the spins. From equation (47) the probability to incur an
error ofmore than 1% is negligible. Finally, equation (51) shows that the coefficientmultiplying ¢ -G f K2( ) in
the expression for the distribution of the second pointer’s readings (15), is very close to unity.With all
coefficientsmultiplying theGʼs in the sum (15)non-negative, and all B Kj

tot∣ ∣ we find themean reading of the
second pointer close to its unperturbed value

d dá ¢ñ = + á ¢ñ á ¢ñ ´ -f K f f K K, 2 10 . 556∣ ∣ ( )

Wehave, therefore, two good non-perturbing ‘classical’measurements along two non-collinear axes, which
leave the systemof the chosen size ready formoremeasurements of this type.

6.Many quantumparticles, and only one quantumpointer

Our next example involves K 1 non-interacting free particles, all in the same quantum state yñ∣ , with amean
momentum p0,
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ò y y yY ñ = ñ ñ = ñ
=

x x x, d . 56
k

K

k k k k k0
1

∣ ∣ ∣ ( )∣ ( )

Wewill be interested in determining the position of the system’s COM, as well as its totalmomentum, see
figure 4. Thus, we consider operators

òå å= ñ á º
= =

X x x x x xd , 57
k

K

k k k k
k

K

k
1 1

ˆ ∣ ∣ ˆ ( )

such that =X X KCOM
ˆ ˆ , and

ò òå å p= ñ á º ñ º ñ
= =

-P p p p p p p x p x xd 2 d exp i , 58
k

K

k k k k
k

K

k k k k k k
1 1

1 2ˆ ∣ ∣ ˆ ∣ ( ) [ ]∣ ( )

aswell as twoGaussian pointers, with positions f and ¢f .

6.1. Position of theCOM
With the help of equation (35), wefind the correspondingwave function to be

òp s
s

á F ñ » - -
- á ñ

ñ-

-¥

¥
f K a G f a

a K x

K
a2 d exp

4
, 59x

x
1

2 1 4
2

2

⎡
⎣⎢

⎤
⎦⎥∣ ( ) ( ) ( ) ∣ ( )

where

ò òy s yá ñ = = - á ñx x x x x x x xd , d . 60x
2 2 2 2 2∣ ( )∣ ∣ ( )∣ ( )

The precise formof the states ña∣ , dá ¢ñ = - ¢a a a a∣ ( ), defined in equation (35), is of no importance to us. It is
sufficient to note that thewave function (59) is localised in a region of a size sD =a K2 x around = á ña K x ,
and that ameasurement to an accuracyDf K will yield á ñ = á ñf K x , and leave the state of allK particles
virtually unchanged. For example, for the particles in identical Gaussian states with ameanmomentum p0,

y ps s= - - +-x x x p x2 exp 4 i , 61k x k x k
2 1 4

0
2 2

0( ) ( ) ( ( ) ) ( )

for themeter readings wefind

ò år p s
s

= - á Y ñ = D + -
-

D +
-f x G f x x f K

f Kx

f K
d 2 exp

2
, 62

k
k x

x

2
0

2 2 2 1 2 0
2

2 2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥( ) ∣ ∣ ∣ ( ( )) ( )

( )
( )

See figure 5. To describe theCOMof the cloud of particles, we need to rescale f by a factor ofK, thus introducing
=f f KCOM ,D = Df f KCOM , distributed as

r p s
s

= D + -
-

D +
-f f K

f x

f K
2 exp

2
, 63x

x
COM COM

2 2 1 2 COM 0
2

COM
2 2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) [ ( )]

( )
( )

( )

which for DK f K  tends to aGaussian distributionwith a SD∼Δ f/K, so that
r d -f f xCOM COM 0( ) ( ) as  ¥K .We can also evaluate thefinalmixed state of the particles, Rpart

ˆ

Figure 4.Collectivemeasurement on a cloud of K 1 free particles, all in the same state yñ∣ . Coupling a single quantumpointer to
all of the particles also allows one to determine the value of any additive quantity Â to a negligible relative error, while leaving the state
of the spins virtually intact. The cases of Â representing the coordinate and themomentum are analysed in section 7.
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á ¢ ñ = áF ¢ñá F ñ = -
- ¢
D

á ¢ Y ñáY ña R a a a
a a

f
a aexp

8
. 64part 1 1

2

2 0 0

⎡
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⎤
⎦⎥∣ ˆ ∣ ∣ ∣ ( ) ∣ ∣ ( )

The terms á ¢ Y ña 0∣ and áY ña0∣ in this last equation are just the pure state of the particles before themeasurement.
By equation (59), the difference - ¢a a 2( ) is of order of sK x

2 . Thus, for

sDf K , 65xCOM ( )

themeasurement yields the position of theCOMof the composite system to an accuracyDfCOM, without
seriously affecting its quantum state. Nextwewant to seewhether such ameasurement would still allow us to
accurately determine the cloud’smomentum aswell.

6.2. Followupmeasurement of the totalmomentum
Rather than evaluate the damage to the cloud’s state which themeasurement of theCOM is likely to produce, we
will go straight to the distribution of the second pointer’s reading. From (15)we have

ò ò òå

å
å
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Evaluating theGaussian integrals, after some algebrawe obtain

r pd
d

¢ = ¢ -
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¢
-f f

f Kp

f
exp , 672 1 2 0

2

2
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where

d
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⎞
⎠⎟ ( )

Thus, on average, the pointer points towards the correct value of the totalmomentumof the cloud, á ¢ñ =f Kp0.
Aswas expected, choosing the accuracy of the firstmeasurement in such away that DK f K  guarantees
the it does not affect themeasurement of themomentum, since d ¢f tends to its unperturbed value, d ¢ »f

sD ¢ +f K2 2 x
2 2 1 2( ) . Finally, choosing D ¢K f K  provides for a good classicalmeasurement of the

momentum,which leaves the state of the cloud practically unperturbed, and ready for the next classical
observation.

6.3. The classical trajectory
Since thefirstmeasurement of the position of theCOM (more precisely, of the operator X̂ , see equation (57)) at
t=0 appears to perturb the state of the cloud only slightly, we should be able tomake a secondmeasurement at
some t>0, and find theCOMwhere the classicalmechanics would put it, in our case, displaced by vt=p0t/m,
m being the particle’smass. Taking x0=0 in equation (61), from (15)wehave

ò òå
å
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is the propagator for the cloud of non-interacting particles. After evaluation of theGaussian integrals involved
we obtain
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exp , 71
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Wenote that we are in the ‘classical regime’, provided the first two terms in the rhs of equation (72) are
dominant. As expected, for a given time t, the effect of the firstmeasurement disappears forDf K , and the
secondmeasurement becomes a ‘good’ classical one, for D ¢K f K  . Remainingwithin these limits, one
will always stay in the classical regime, wheremeasurements describe a large quantum cloud of particles as a
classical point-sized object, which follows awell defined trajectory.

7. Splitting a cloud of particles by scattering

To extend the discussion beyond freemotion, we assume that our cloud of particles, travelling from left to right,
meets with a potential barrier which is non-zero only between x=−d and x=0, see figure 6. If onewaits long
enough, each particle’s state will be split into the transmitted (T) and reflected (R) parts

y y yñ = ñ + ñ, 73k k
T

k
R∣ ∣ ∣ ( )

localised far to the right and to the left of the barrier, respectively. Now theCOMof the system lies somewhere
between y ñT∣ and y ñR∣ , where no particles are found, and its position is of little interest.We can, however, specify
to the transmission channel, by considering two commuting operators (Θ(x)=1 for x>0, and 0 otherwise)

ò

ò

å å

å å

= ñQ á º

= ñQ á º

= =

= =
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X x x x x x x

d

d , 74
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k k k k
k
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k k k k k
k

K

k
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1 1

1 1

ˆ ∣ ( ) ∣ ˆ

ˆ ∣ ( ) ∣ ˆ ( )

ofwhich thefirst represents the number of the transmitted (T) particles,NT, and the second is related to the
position of theCOMof the transmitted cloud as =X X NT T T

COM .With y ñk∣ split into only two orthogonal
components, the analysis is similar to that of the spin-1/2 case of section 6. The averages and variances of one-
particle operators are

y y sá ñ = á ñ º = -n P P P, 1 , 75T T T T
n

T T2
Tˆ ∣ ( ) ( )

Figure 5. Localisation of the wave function around the classical values. Coefficients,multiplying the states ña∣ in the expansion (9), for
K=3×104 free particles, all in the sameGaussian state yñ∣ (61), with x0/σx=5.0, and p0/σp=p0σx/2=7.5. (a) If the position of
the centre ofmass ismeasured; (b) for themeasurement of the totalmomentum.
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if NTˆ ismeasured, and

y y
s y y y y
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= á ñ - á ñ

x x

x x

,

, 76
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x
T T T T2 2 2
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∣ ∣ ∣ ∣ ( )

for ameasurement of XTˆ . Denoting the corresponding pointer readings as f NT and f XT , from equation (35)we
obtain
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where the states ña∣ in equations (77) and (78) are defined as in equation (35) for the operators NTˆ and XTˆ ,
respectively. Thus, with

s- D D á ñKP P f PK f K x1 , and , 79T T
X x N

T
T T T( ) ( )   

it is possible to have good classicalmeasurements of both the number of transmitted particles, and the position
of theCOMof the transmitted cloud, for K 1 . The same can be repeated for the reflected part of the cloud, by
replacingΘ(xk) byΘ(−xk−d) in equations (74). Suchmeasurements, performed before and after the particles
interact with the barrier, yield a picture of a point sized object of amassmK being divided into two parts of
massesPTmK and (1−PT)mK, moving to the right and to the left, respectively.

8.Quantummeasurementswith an observer

Nowwe can consider anObserver, existing in hugely oversimplifiedworld of objects,made up from small parts
which obey quantummechanical rules. Some of the objects are large, due to the large number of their
constituent parts. For reasons unknown to us, theObserver can only gain information about the collective
properties of objects, such as the total spin, position of theCOM, or the totalmomentum, by applying a single-
pointermeasurement procedure, described above. The accuracy of themeasurements is always good enough to
ensure an error small relative to the large valuemeasured, yet sufficiently poor so as not to perturb the quantum
state of a sufficiently large conglomerate.Wemust conclude that such anObserver, dealingwith large objects,
would perceive an essentially classical world inwhich all components ofmagneticmoments can bemeasured
simultaneously.He/she/it would also visualise a cloud of quantumparticles as a single small object, possessing a
well defined position andmomentum at all times, andmoving along a classical trajectory, prescribed by classical
mechanics.

This suggests using theCOMof the cloud as a pointer. It was shown in section 7, that the COM’s position can
be determined to a sufficient accuracy, without significantly altering its quantum state. Thus the result of a
measurement, encoded in its position, can be verified by other independentObservers, thus becoming, in
Einstein’s words [22], an ‘element of reality’.

Figure 6.A cloud of free particles, scattered off a potential barrier, is split into the transmitted (T), and reflected (R) parts. A quantum
pointer, coupled only to the particles, found to the right of the barrier, determines the position of the centre ofmass of the transmitted
cloud.
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There remains one delicate question, namely how exactly would anObserver observe the pointers, which
provide for his/her/its information about the outsideworld?Herewewill need tomake a strong assumption,
endowing theObserver with an ability to simply ‘see’ the large objects (as their COM’s) in the coordinate space,
in theway one is able to read an analogue car’s speedometer without the help of additional intermediary device.
Thus, inwhat follows, the coordinate spacewill have to have a special status, in the sense that the total spin, or the
total angularmomentum could not be ‘seen’ directly, but theCOMof a cloud of particles could.Wewill go one
step further and equip theObserver with a sensor, a quantumpointer of a suitable resolutionΔ f, and identify
theObserver’s state with the state of the pointer, prescribed by the conventional quantummechanical rules.We
will say nothing aboutObserver’s conscience, its status, or it adherence to quantum, or any other laws.
Admittedly, the above is a less than perfectmodel for the immenselymore complex physical world. However, we
onlywish to prove a principle, andwill use it throughout the rest of the paper.

9.One quantum spin, onemacroscopic pointer, and one ormore observers

Having recovered certain degree of classicality for a composite, consisting ofmany quantumparticles, we can
nowdevise ameasurement, which canmake properties of a quantum system, such as a spin-1/2, directly
accessible to our rudimentaryObserver (see figure 7). Now the pointer itself will be a cloud of K 1 particles in
the sameGaussian state

òy y

y ps s

ñ = ñ = ¼

= --

x x x k K

x x

d , 1, 2, ,

2 exp 4 , 80

k k k k

k x k x
2 1 4 2 2

∣ ( )∣

( ) ( ) [ ] ( )

each coupled to a single spin in a state

j a bñ =  ñ +  ñz z , 810∣ ∣ ∣ ( )

so that the full interactionHamiltonian is given by

åd= - ¶  ñá  -  ñá 
=

H g t z z z zi , 82
n

N

xint
1

n
ˆ ( ) [∣ ∣ ∣ ∣] ( )

where the coupling strength gwas reinstated for further convenience. (Note that since ¶ = å ¶=KX i
K

x1 i
, this is

equivalent to coupling the spin to theCOMof the cloud, albeit with amuch smaller strength, g/K.)
Thus, our purpose is tomeasure (up to a factor 1/2) the z-component of the spin, using theCOMof the

cloud of quantumparticles as a ‘classical’ pointer.With the states of all particles translated by either g or−g, for
the state of the composite spin+particles+pointer (the last one represents theObserver, as discussed in the
previous section)wehave

ò òå åa bá F ñ = - Y + ñ  ñ + - Y - ñ  ñf x G f x x g z x G f x x g zd , d , , 83
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where

 yY  ñ º ñ
=

x g x g x, 84
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k kpart
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∣ ( ) ( )∣ ( )

is the state of the cloud, shifted as awhole by g to the right, or to the left, respectively. As before, the probability to
have a reading =f f KCOM , which is all theObserver can ‘see’, is given by tracing out the spin’s and particles’s
variables from the pure state F ñáF1 1∣ ∣, and, recalling the derivation of equation (62), we find
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If theObserver’s own accuracy,Δ f, is such that

s D = DK f f K g , 86x
2

COM ( ) 

the twonarrowGaussians in equation (85) do not overlap, and represent a binary choice offinding the spin
aligned up or down the z-axis, the chances of that being a 2∣ ∣ and b 2∣ ∣ , respectively.

At the same time, - åG f xk k( ) is broad enough to leave the highly localised (see equation (35)) states of the
particles almost unchanged. Approximating - åG f xk k( ) byG( f ) in equation (83), for themixed state of the
particles of themacroscopic pointer we obtain (see equation (64))
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a bY + ñáY + + Y - ñáY -R g g g g , 87part
2

part part
2

part partˆ ∣ ∣ ∣ ( ) ( )∣ ∣ ∣ ∣ ( ) ( )∣ ( )

where òY  ñ = Y  ñg x x gd ,part part∣ ( ) ∣ ( ) .
Finally, this accurate (or ‘strong’)measurement results in the destruction of the spin’s state, whose density

matrix becomes diagonal,

a b ñá  +  ñá  z z z z , 88spin
2 2ˆ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )

since the coherences rapidly vanish as the number of particles,K, increases,

ab sá   ñ = á   ñ ~ -  z z z z Kgexp 2 0. 89xspin spin
2* *∣ ˆ ∣ ∣ ˆ ∣ ( ) ( )

These results can be presented in a slightly differentmanner. After the pointer had interactedwith the spin,
but before theObserver ‘looked’ at it, the entangled state of the spin+pointer subsystem F¢ñ1∣ is given by

a bF¢ñ = Y + ñ  ñ + Y - ñ  ñg z g z . 901 part part∣ ∣ ( ) ∣ ∣ ( ) ∣ ( )

As the number of particle increases,  ¥K , themacroscopic states Y + ñgpart∣ ( ) and Y - ñgpart∣ ( ) become
orthogonal for any finite shift g,

ò y yáY + Y - ñ = - +
¥

g g x g x g xd 0, 91
K K

part part *⎡
⎣⎢

⎤
⎦⎥( )∣ ( ) ( ) ( ) ⟶ ( )

since themodulusof integral in the rhs is less thanunity, for any choice ofψ(x), andnot just for theGaussianone
made in equation (89). Then themixed state of the spin is givenby equation (88), and according to the basic rule of
quantummechanics, for anyonedealingonlywith the spin in the future,will receive it pointingupwith aprobability
a 2∣ ∣ , or pointingdown,with aprobability b 2∣ ∣ . This is also true for themacroscopicpointer,which theObserverwill
receive inoneof the twoorthogonal states Y  ñgpart∣ ( ) , with the sameprobabilities. Theonly thing thatmatters to the
Observer, involved onlywith thepointer, is the state of the particles, andnot how this statewas created.The same
statistical ensemble couldbeprovidedby anAlice,whoflips a skewed coin, anddependingonhow it comesup, sends
toObserver thepointer in a state Y + ñgpart∣ ( ) , or Y + ñgpart∣ ( ) , with the sameprobabilities a 2∣ ∣ and b 2∣ ∣ . In each case,
he/she/itwill see thepointer’sCOM,displaced to the left, or to the right, as discussed in section7.

Wenote here a similarity with the case of consecutivemeasurements of the spin’s direction,made by a set of
inaccuratemicroscopic pointer’s, which fire one after another [23]. Eventually, the spin ends up driven into one
of the two possible states, and the information aboutwhich one is encoded not into position of an individual
pointer, but into a collective variable, similar to the position of theCOM.Thus, the standard quantumapproach
remains consistent for as long as theObserver has direct access only tomacroscopic pointers in coordinate space.

We can add anotherObserver, also ‘looking’ at the samemacroscopic pointer, by simply replacing in
equation (83) - åG f xn n( )with a product - å ¢ - åG f x G f xn n n n( ) ( ). After tracing out the spin’s and the
particles’s variables, we obtain a joint probability distribution, r ¢f f,COM COM

( ), representing a binary choice:
both observers see themacroscopic pointer shifted by g either to the right, or to the left. (Note that the formof
equation (83) prevents possible disagreements, providedG( f−g) andG( f+g) do not overlap). The state of the
macroscopic pointer remains practically unchanged, so that otherObservers can confirm the results of thefirst
two, if theywish.With this we achieve the aim (D) of the Introduction.

Figure 7.Amacroscopic pointer, consisting of K 1 free particles in the same state, and coupled to a single spin-1/2, accurately
measures at time t1 the spin’s projection on the z-axis, possibly destroying the state of the spin. Later, at time t2, anObserver
determines the position of the pointer’s centre ofmass, causing only negligible damage to the state of the pointer (seefigure 4).

16

New J. Phys. 21 (2019) 123031 D Sokolovski et al



10.Macroscopic pointer in a ‘grotesque’ state

Quantummechanics allowsmacroscopic superpositions although inpractice creating such superpositionsmaybe
difficult. BelowwequestionwhatObserverwould seewhen looking at a ‘grotesque’ [24] state,where allKparticles,
whichmakeup thepointer, areprepared inoneof the twoGaussian states,ψ(x±d),well separatedbyadistance 2d.
Theoverall state is, therefore, similar to (83), except for the absenceof the spin states, since this timeno spin is involved

ò å a bF = - Y + + Y -f x G f x x d x dd , , . 92
k

k1 part part∣ ( )( ∣ ( ) ∣ ( ) ) ( )

As before, theObserver detects the position of the pointer’s COM.Noting that áY  Y ¢ ñx d x dpart part( )∣ ( ) 
d y- ¢  =x x x dk

K
k1

2( ) ∣ ( )∣ and áY - Y ¢ + ñ »x d x d, , 0part part( )∣ ( ) , and tracing out the pointer’s variables, for
theObserver’s densitymatrix we obtain
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Choosing, as in section 10

s D = DK f f K d, 94x COM ( ) 

and sending  ¥K , in theCOMvariables we find

a d d b d d¢ ~ - ¢ - + + ¢ +R f f f d f d f d f d, , 95obs COM COM
2

COM COM
2

COM COM
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where d pº -
-x a x alim exp 2a 0

2 1 4 2 2( ) ( ) ( ). Thus, theObserver’s densitymatrix is nearly diagonal, and
the two possiblemeasured values are±d.Wemust, therefore, conclude that presentedwith a pointer in a
macroscopic superposition, theObserver willfind it either at d, or-d , with the probabilities given by the
absolute squares of the amplitudesα andβ in equation (92).

11. Classical limit of themeasurement theory

Ourdiscussionwouldbe incompletewithoutmentioning thepurely classicalmeasurement,where a classical pointer is
employed todetermine aprojectionof a large classical angularmomentumontoa givendirection n


. Thus,we consider

a systemofK spins-1/2 in the state (16), a pointer consistingofNparticles, all in aGaussian state yY ñ =  ñ=n
N

n0
point

1∣ ∣

y ps s= --x x2 exp 4 , 96n x n x
2 1 4 2 2( ) ( ) [ ] ( )

and anObserver, whose internal resolution isΔ f, p= D - D-G f f f f2 exp 42 1 4 2 2( ) ( ) [ ].With the help of
equations (31)–(35), for K 1 , wefind the pure state of the spins+pointer+observer to be
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where = -A j K2j
tot . Now there are threeGaussianwidths, one associatedwith the localisation of thewave

function of theK spins, qK2 sin , anotherσx, describing the states of the particles which form the pointer, and
D = Df N fCOM, which describes theObserver’s own resolution. Our goal is to choose them in such away that
theObserver gets an accurate result without disturbing neither the pointer, nor the spins. Performing the
Gaussian integrals, for the distribution of theObserver’s readingswe obtain
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and for the densitymatrix of the spin systemwefind

s
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After interacting with the spins, themixed state of the particles, forming the classical pointer, consists of the
initial states Y ñ0

point∣ shifted by = -A j K2j
tot , j=0,1,..,K, each shift occurring with the probability

q q~ - -A K Kexp cos 2 sinj
tot 2 2[ ( ) ] (see section 6). Thus, with s qK2 sinx  we can consider the set of

particles to be shifted by qK cos as awhole. The next step, observation of the cloud by anObserver, whose
intrinsic resolution isΔ f, was discussed in section 7. In particular, if sDf NxCOM  , theObserver will
register the COMof the particles at q=f K cos , and leave the state of the classical pointer almost unchanged.
Wenote also that in equation (102) the difference - ¢j j 2( ) must be of order of qK sin 22 , andwith
s qNK sin 2x

2 2 , the initial pure state of the spin systemwill also remain largely unchanged.
In summary, with K N, 1 , wefind ourselves in the classical regime if

s DK N f K , 101x COM ( )  

which can be satisfied, for instance, forσx∼K5/6,N∼K1/6, andD ~f KCOM
5 6. Nowwe have classicality as

defined in the Introduction. A classical pointer couples to a large classical angularmomentum (spin) in such a
manner that theObserver obtains the classical value of its projectionwith a negligible error. A differentObserver
can thenmeasure the spin’s projection on a different direction, and obtain the corresponding classical value, also
with a negligible error. Finally, the secondObserver can ‘look’ at the first Observer’s pointer, and verify the result
obtained by his predecessor. All thementioned values ‘exist’ in the sense that they can be obtained any number of
timeswithout altering the states of either the spin or the pointer.

We conclude this section bywriting down the classical equations ofmotion for the case where a classical
pointermonitors a system, composed of a large number of particles. By theCLT (see section 5), to a good
accuracy, we can ascribe to each of the two its position as well as itsmomentum, say, (p, x) and (X, P),
respectively. Themeasured operator Â is replaced by a classical dynamical variable,A(x, p), and the coupling
with the pointer takes a form g(t)PA(x, p), where g(t) is some switching function.Now theHamilton’s equations
read

¶ = ¶ + ¶
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¶ =
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whereH0(x, p) is the system’s own energy in a state, characterised by x and p. The pointer’smomentum is
conserved, P=const, and its displacement after a timeT is

ò- =X T X g t A x t P p t P t0 , , , d , 103
T

0
( ) ( ) ( ) ( ( ) ( )) ( )

which for a special choice g(t)=1/T=const coincides with a time average of theA. Note, however, that the
pointer does not perturb the observed system if, and only if, the pointer’smomentum is zero,P=0.Quantally,
an accurate determination of the initial positionX(0), leads to a large spread in the pointer’smomenta around
P=0, which inevitably disturb the observed system. In the classical limit, it is possible to keep the last terms in
thefirst and second of equations (102) small, compared to the largeH0(x, p), and non-invasivemonitoring of a
classical system is, in principle, possible.

12. From classical back to quantum

Finally, we briefly return to theObserver, able tomonitormacroscopic objects, by following their COM, to an
accuracyΔ f, as discussed in section 5.How can he/she/it learn that the classical description is, in fact, an
approximation? There are at least two possible ways. One consists in studying small individual objects, such as a
single spin-1/2. As discussed in the previous section, it is possible to prepare K 1 spins all polarised along the
z-axis, then obtain, practically with certainty, a zero value for the total spin’s projection on the x-axis, andfinally
obtain the original valueK, in anothermeasurement along the z-axis. For a single spin, this is, of course, no
longer true, as was discussed in section 10. Aligning it with the z-axis, one then obtains the value of 1/2 or−1/2
along the x-axis, and has only a 50% chance to recover the original polarisation if a secondmeasurement along
the z-direction ismade. Thus, the classical picture of an angularmomentumhavingwell defined components
along all directions breaks down, and theObserver becomes aware of the different laws governing the behaviour
ofmicroscopic objects.
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Another possibility is taking a closer look at what so far had the appearance of a singlemacroscopic object.
TheObserver, whose ability to observewe have already reduced to that of a pointermonitoring theCOMof a
cloud of K 1 quantumparticles to an accuracyΔfCOM, finds theCOMat, say, the origin, =X 0COM .
According to equation (65), for sDf KxCOM  the error involved depends only on theObserver’s own
resolution. Furthermore, if themeasurement is repeated after a time t, to an accuracyD ¢f , such that (see
equation (72))
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it willfind theCOMat the location predicted by classicalmechanics, within the error bounds again determined
by theObserver’s resolution, - D ¢ + D ¢ p t m f X p t m f0 COM COM 0 COM

. See figure 8.
However, if the accuracy of the firstmeasurement is significantly improved,D f 0COM , so that now
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the secondmeasurement willfind theCOMof the cloudwithin amuch broader range

d d- + p t m X X p t m X , 1060 COM COM 0 COM ( )

with the original cloud of particles dispersed by the interactionwith the first pointer. This, in turn, will prompt
theObserver to recognise that what he/she/it is dealingwith is not an indivisible point-size object, obeying
classical laws ofmotion, but a conglomerate of essentially quantumparticles.

13. Conclusions and discussion

In summary, we have followed [9, 10] in askingwhether it is possible, in principle, to obtain a classical picture by
observing, not too scrupulously,macroscopic objects, composed of a large number of constituent parts, which
individually obey knownquantum laws. In particular, we studied a scheme inwhich a rudimentaryObserver has
a direct access to the position of amacroscopic pointer, which, in turnmay be coupled to elementary quantum
systems, such as a qubit, or to other classical-like systems, like large collections of polarised spins.We found it
plausible that such an observer would be able to have an optimal resolution, whichwould allow him/her obtain
a classical result to a high relative accuracy, while dealingwith ‘large’macroscopic systems, whose number of
constituent parts,K, is of order of the Avogadro constant.Within these resolution limits, large conglomerates of
quantumparticles would be perceived as point-sized objects,moving along trajectories prescribed by the laws of
classicalmechanics. Such an object would appear to possess awell definedmomentum,which can bemeasured
to a good accuracy, without affecting the object’s position. In a similar way, a large angularmomentumwould
also be seen as classical quantity, all of whose components could be determined simultaneously, andwith a small
relative error. Should themeasurements of this type be the only possible way to access physical reality, this reality
would have an essentially classical aspect, with the underlying quantumnature revealed only throughmore
accuratemeasurements, or through studying individual particles, or spins.

Figure 8.Amacroscopic pointer consisting of N 1 free particles in the same state and coupled to a large angularmomentum
K 1 , accuratelymeasures themomentum’s projection on the z-axis at t1, without damaging its state. Later, at time t2, anObserver
determines the position of the pointer’s centre ofmass, also causing only a negligible damage to the state of the pointer. The
measurement, if repeated, will yield the same result, which can be verified by otherObservers.
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Such classical-like description ismade possible by the tendency of thewave function, describing a
macroscopic object, to become concentrated in a relatively small region of the spectrumof an operator
representing a particular collective variable. This property is repeated in different representations, and for
various non-commuting operators. Consequently, it is possible to devise a quantummeasurement [9], which
would not destroy the coherence between the essential components of amacroscopic quantum state, and yet
yield only an error small compared to the large overall value of themeasured quantity.With the state perturbed
only slightly, each newmeasurement is no longer affected by its predecessors, and themeasured values,
associatedwith the peaks of thewave function, acquire certain objectivity, reminiscent of Einstein’s ‘elements of
reality’ [22].

Needless to say, ourmodel is vastly oversimplified.Macroscopic object are not, in general, composed of non-
interaction particles inGaussian states. Spins do not usually all point in the same direction. A human eye
observing the needle of ametre cannot be expected to perform a vonNeumannmeasurement of the needle’s
COM.To estimate theCOM’s position anObserver would need to know also the number of particles, which
make up the pointer.However, it retains some of the features, associatedwith everyday experiences. An
Observer cannot directly ‘see’ a spin, or an angularmomentum, yet is able to perceive largemacroscopic objects
in the coordinate space, clearly preferred by the human eye. Amacroscopic pointer is perceived as a single object,
rather than a point in aK-dimensional configuration space, as was first proposed in section 3.Our analysis
requires no special role for human conscience [25] beyondwhat has been just said.Neither havewe attempted to
resolve the vexed problemof the ‘wave function collapse’ (see, for example, [26]), as we never tried to follow the
fate of the parts of the quantum state, which correspond to the outcomes, notmaterialised in the course of the
experiment. Rather we note that theObserver is involved onlywith the ‘pointer’ part of the spin+pointer
composite. The state of the pointer in the entangled state, formed after the interactionwith the spin, is amixed
one, which, already contains the probabilities. According to standard quantummechanics, these probabilities
are passed on to theObserver, who has no difficulty in seeing theCOMof the pointermoved either to the left, or
to the right, in each run of the experiment. In this imperfect way, we are able to place the divide between
quantumand classical behaviour at the stagewhere themeasured value becomes encoded in the displacement of
amacroscopic object with classical properties. It remains to be seenwhether themodel, despite of its numerous
shortcomings, captures the essential features of the quantum-to-classical behaviour. Yet, as was claimed in [9], it
offers an alternative way towards its understanding.

We concludewith an attempt at amore general excuse for leaving outside anymention ofObserver’s
conscience. In our discussion, anObserver has access to only a fraction of the complexworld, through his/her/
its ability to perceive certain ‘physical phenomena’. The ‘physical laws’, established by theObserver, are,
therefore, but connections and relations betweenObserver’s accessible experiences. As such, theymay not
amount to an exhaustive objective picture of theworld, but are destined to reflect particular properties and
limitations of theObserver itself. Such is, for example, the rule (see section 7) that the COMof a large cluster of
free particles alwaysmoves with a constant velocity. The very notion of COM is particular to themanner in
which theObserver perceives thismacroscopic object. The ‘unseen’ part of the farmore complexworldwill
remain outside the remit ofObserver’s physics, unless or until a better experiment provides for a new
experience. It is possible then that newphysics, based on this experience (e.g. quantum theory), will still be
incomplete, yet leave room for further improvement. Itmay also be possible thatObserver’s own abilities to
perceive will have been exhausted, without providing a complete understanding of physical reality. In this latter
case, a theory is likely to descend, like it seems to happenwith quantummechanics, to the level where ‘no one has
found anymachinery behind the law’ [27]. AnObserver, aware of own limitations, will almost certainly consider
him/her/itself not a suitable object of a study, as has often been claimed inmodern literature (see, for example,
[28]).With theObserver excluded from the list of the studied physical phenomena, quantummechanics
acquires internal consistency. Outcomes of the experiments anObservermay performon the parts of the
outsideworld occurwith certain probabilities, or frequencies. Quantum theory provides the recipes for
calculating those probabilities for all eventualities.
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AppendixA

Consider a quantum systemwith a continuum spectrum, and its three possible bases m nñ ñ,{∣ } {∣ }and gñ{∣ }
such that

òd m n gá ¢ñ = - ¢ ñá = Îz z z z z z z I z, d , with , , . 107∣ ( ) ∣ ∣ ˆ { } ( )

For a composite consisting ofK such systemswe can construct three complete product bases

  d dñ º ñ á ¢ñ = - ¢ º - ¢
=

z z z z z z z z, . 108
i

K

i
i

i i
1

∣ ∣ ∣ ( ) ( ) ( )

Wewill also need two operators, with eigenstates mñ∣ and nñ∣ ,

ò òm m m m n m n n= ñ á = ñ áA A B Bd , d , 109ˆ ∣ ( ) ∣ ˆ ∣ ( ) ∣ ( )

where ò ò=z z zd d ... d k1 , and m m mº ¼A A , , K1( ) ( ), etc.Wewill be interested in the case when Â and B̂ are
sums of variables describing individual subsystems, i.e.

å åm m n n= =
= =

A A B B, . 110
i

K

i i
i

K

i i
1 1

( ) ( ) ( ) ( ) ( )

Nowwe can define the probability amplitude for the composite to start in some state Y ñ0∣ , ‘pass through’ a state
mñ∣ at t=0, evolve until t>0, pass through nñ∣ , and end up in gñ∣ ,

g n m g n n m m¬ ¬ ¬ Y = á ñá ñá Y ñ U t , 1110 0( ) ∣ ∣ ˆ ( )∣ ∣ ( )

where = -U t Htexp iˆ ( ) ( ˆ ) is the composite’s evolution operator.With this we can define the amplitude for
having =A aˆ , and then =B bˆ , before arriving in gñ∣ ,

òg m n g n d n n m d m m¬ ¬ ¬ Y = á ñ - á ñ - á Y ñ b a B b U t A ad d . 1120 0( ) ∣ ( ( ) ) ∣ ˆ ( )∣ ( ( ) ) ∣ ( )

If two vonNeumann pointers, prepared inGaussian states, G f( ) and ¢ ¢G f( ), are employed tomeasure Â and B̂,
the absolute square of the coarse grained amplitude

òg g¬ ¢ ¬ ¬ Y = ¢ - - ¬ ¬ ¬ Y f f a b G f b G f a b ad d . 1130 0( ) ( ) ( ) ( ) ( )

does yield the joint probability to have pointer readings f and ¢f , andfind the system in thefinal state gñ∣ ,
r g g¢ = ¬ ¢ ¬ ¬ Yf f f f, 0

2( ∣ ) ∣ ( )∣ [19]. Finally, summing over allfinal states gives the probability tofind

the pointer readings f and ¢f , òr g r g¢ = ¢f f f f, d ,( ) ( ∣ ). It can also bewritten as the square of the normof a
state,

r ¢ = áF ¢ F ¢ ñf f f f f f, , , , 114( ) ( )∣ ( ) ( )

where

F ¢ ñ = ¢ ¢ Y ñf f G f U t G f, , 115B A 0∣ ( ) ˆ ( ) ˆ ( ) ˆ ( )∣ ( )

andwe have introduced operators
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or, explicitly,
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Appendix B

Bearing inmind that ò p- + =
-¥

¥
x a bx x a a bexp d exp 42 2 2 2 2[ ] [] ], it is easy to evaluate the following

integrals ( ºx x xd d ..., d N1 ).
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Wenote that for p= -A a2 1 2( ) , p= -B b2 1 2( ) , and  ¥N , I( f,A,B, a, b,N,N) tends to aGaussian
distribution of awidth b

p --I f A B a b N N b f b, , , , , , exp , 1202 1 2 2 2( ) ( ) [ ] ( )

and
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