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We study Coulomb crystals containing two ion species simultaneously confined in radio frequency traps and
coupled to different thermal reservoirs located in two separate regions. We use a three-dimensional model to
simulate the trapped bicrystal and show in a numerically rigorous manner the effects of the mass dependence of
the trapping frequencies on the underlying nonequilibrium dynamics and the temperature profiles. By solving the
classical Langevin equations of motion, we obtain the spatial probability densities of the two ion species and the
kinetic temperature profiles across the axial direction of the trap in the nonequilibrium steady state. We analyze
trapping conditions leading to bicrystals that exhibit ion conformations ranging from a linear chain of alternating
ion species to two- and three-dimensional configurations. The results evidence the spatial segregation of the two
ion species due to the mass dependence of the trapping frequencies and the increase of ion delocalization for
heavier ion species and/or weaker trapping confinements. We also show the correlation between the increase of
the temperature gradient in the bulk and this enhancement of ion delocalization through the trap.
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I. INTRODUCTION

In recent years Coulomb crystals of ions confined in elec-
tromagnetic traps and interacting with laser beams have be-
came a particularly convenient platform to shed some light on
the intriguing issue of heat transport at the microscopic level
[1–11]. Surprisingly, while the flow of heat through a medium
exposed to a temperature gradient is a ubiquitous phenomenon
in our daily lives, the conditions that must be satisfied at
the microscopic level in a system for heat conduction to
take place according to the ordinary circumstances predicted
by Fourier’s law are far from clear [12,13]. In fact, it has
been shown that spatially constrained atomic systems, such
as carbon nanotubes or molecular junctions, can exhibit an
anomalous heat transport, with nonlinear temperature profiles
and a divergence of the thermal conductivity with the size of
the system [14–16]. Within this context Coulomb crystals of
trapped ions provide a connection between the simple, but not
trivial, mathematical models traditionally considered to study
this fundamental open question in the field of nonequilibrium
statistical physics [12,13], and the thermal conduction exper-
iments on nanometric systems of reduced dimensionality that
can be performed nowadays [1,2,17–20].

Experimentally, Coulomb crystals of trapped ions have be-
came an appealing system due to the feasible and unique con-
trol of the spatial conformation of ions by adjusting the trap
parameters [21–28]. Thus, under very strong trapping con-
ditions the ions exhibit an inhomogeneous alignment along
the axial direction [29], whereas a decrease in the transverse
trap confinement triggers structural phase transitions in which
ions can arrange in flat zigzag or elliptical configurations
[21–23,30–32]. Also the formation of three-dimensional heli-
cal or spheroidal configurations has been reported [22,33,34].

Another attractive aspect of trapped ion systems is that typical
separations between ions of the order of several microns make
it possible to focus laser beams on individual ions, which is
particularly convenient when designing an energy conduction
experiment [1,2].

From a theoretical point of view, trapped ion systems
provide a versatile playground for studying energy transport
in both classical and quantum regimes [1–11]. To our knowl-
edge, so far the studies have dealt with Coulomb crystals
containing a single ion species. It has been shown that the
thermodynamic properties of these systems strongly depend
on the ion spatial configuration, resulting from the interplay
between the many-body Coulomb interaction and the exter-
nal substrate potential applied on the trap electrodes. It is
known that Coulomb monocrystals of trapped ions coupled
to different thermal baths in two separate regions can exhibit
anomalous heat conduction. Both the temperature profiles
and the heat flow are very sensitive to the structural phase
transitions that modify the effective dimensionality of the
system. The linear chain configuration displays an almost
flat temperature profile characteristic of harmonic systems,
whereas the zigzag and helical configurations show nonzero
temperature gradients in the bulk. On the other hand, heat
flux becomes optimal in the linear chain configuration in the
proximity of the onset for structural phase configurations to
higher dimensional configurations [5,10]. A recent analysis
of the connection between heat transport properties and the
underlying steady nonequilibrium dynamics has elucidated
a striking correlation between the ion delocalization and the
emergence of nonzero temperature gradients in the two- and
three-dimensional configurations [10].

In this work we study energy transport in Coulomb crys-
tals containing two different ion species. Unlike crystals
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composed of a single type of ion, in bicrystals the explicit de-
pendence of the trap frequencies on the mass of confined ions
must be explicitly taken into account. The mass dependence
of the effective trapping frequencies causes simultaneously
trapped ion species to experience different confining forces,
and as a result the two species may separate spatially [35–38].

We analyze the effects that the mass dependence of the
trapping potential has on the steady nonequilibrium dynamics
and the kinetic temperature profiles. We will show that the
ion delocalization is enhanced by the presence of a heavier
ion species in the bicrystal and analyze how the temperature
profiles in the bulk are modified according to the masses of
the confined ion species. We will consider a three-dimensional
model of the trapped bicrystal that fully includes the Coulom-
bian many-body interaction and perform the numerical resolu-
tion of the classical Langevin equations. We will set trapping
conditions leading to bicrystals that exhibit ion conformations
ranging from a string of alternating ions of interest in quantum
optics and quantum information processing [39,40] to config-
urations of higher dimensionality that could be used as sources
of atomic or molecular ions for spectroscopy and chemical
physics studies and sympathetic cooling [41–44].

The paper is organized as follows. In Sec. II we introduce
the model considered to study the nonequilibrium dynamics
of bicrystals in contact with two different thermal reservoirs
located in separate regions. We describe the details of the
numerical experiments and set the parameters corresponding
to a possible experimental setup. We consider trapping con-
ditions leading to bicrystals of different dimensionality. In
Sec. III we analyze the spatial probability densities of the
entire bicrystals and the spatial distributions of the individual
ions. The steady kinetic temperature profiles across the axial
direction of the trap are analyzed in Sec. IV. To elucidate
their behavior on small scales we introduce a model of a
Brownian particle confined within a known potential energy
surface and interacting with two different thermal reservoirs.
Finally, Sec. V summarizes the main conclusions.

II. THE MODEL

We consider a Coulomb crystal composed of N ions of
two species A and B confined within a radio frequency (rf)
trap; the ions of species A has mass MA and those of species
B mass MB. Both ion species have identical charge Q. We
focus on the classical dynamics of the motional degrees
of freedom of the ions, described by the position coordi-
nates qi = (qx,i, qy,i, qz,i ) and their conjugated momenta pi =
(px,i, py,i, pz,i ), with i = 1, . . . , N .

We assume that the ions interact with each other through
the Coulomb repulsion

U (|qi − q j |) =
(

Q2

4πε0

)
1

|qi − q j | , (1)

with ε0 the vacuum permittivity. In current experimental se-
tups the entire ion ensemble can be confined within the finite
volume delimited by the spatial distribution of electrodes in
radio frequency traps. To achieve such confinement a combi-
nation of static and alternating electric fields are applied to
the different electrodes [21,45–48]. Here we consider that this

external potential has the form [49,50]

V (qx, qy, qz, t ) = Qκ
[
Vdc

(
�xq2

x + �yq2
y + �zq

2
z

)
+Vrf

(
�′

xq2
x + �′

yq2
y + �′

zq
2
z

)
cos(�t )

]
,

(2)

where Vdc and Vrf are the amplitudes of the dc potential and rf
driving potential applied to the trap electrodes, respectively;
� is the rf drive frequency; and κ is a constant related to the
geometry of the trap electrodes. The parameters (�x,�y,�z )
and (�′

x,�
′
y,�

′
z ), which are also determined by the trap

geometry, satisfy the Laplace condition

�x + �y + �z = �′
x + �′

y + �′
z = 0. (3)

We assume appropriate choices of the trap parameters, with
Vdc � Vrf and a high-frequency �, and make use of the
pseudopotential approximation to describe the dynamics of
trapped ions located sufficiently far away from the trap elec-
trodes and with low kinetic energy. Under these conditions,
the trapping potential (2) acting on a trapped ion of mass M
and charge Q can be replaced by the time-averaged harmonic
potential [49]

Vsec(qx, qy, qz ) = M

2

(
ω2

x q2
x + ω2

y q2
y + ω2

z q2
z

)
, (4)

where the secular frequencies

ωβ =
√

2Q

M
κVdc�β + 2Q2

M2�2
κ2V 2

rf �
′ 2
β , (5)

with β = {x, y, z}, depend both on the charge and on the
mass of the trapped ion. Hence, simultaneously trapped ion
species of different masses will experience different harmonic
confinement frequencies. Specifically, the lighter ion species
will be more strongly confined than the heavier one.

Then the dynamics of the two-species ion ensemble ruled
by the Coulomb repulsion (1) and the effective harmonic
trapping potential (4) can be described by the Hamiltonian

H =
N∑

i=1

⎡
⎣ p2

i

2Mi
+ 1

2

N∑
j �=i

U (|qi − q j |) + Vsec(qi )

⎤
⎦. (6)

A. Nonequilibrium dynamics

We analyze the response of the trapped bicrystal to a
imposed temperature gradient, as a function of the masses
of the two ion species and the amplitude of the potentials
applied to the trap electrodes. To induce heat transport through
the ion system, we consider the interaction with two different
thermal reservoirs located at both ends of the axial x direction.
To emulate these reservoirs we consider laser beams tuned
to act on the ions of species A whenever they visit these
regions, whereas the ions of species B are not connected to
these laser reservoirs. The two ion species interact with each
other through Coulomb repulsion. To characterize the spatial
distribution of the laser reservoirs acting on any given ion of
species A located at the axial x-coordinate we introduce the
function

B(x; BL, BR) = 1
2 (BL{1 − tanh [aB(x + xB)]}
+ BR{1 + tanh [aB(x − xB)]}). (7)
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Then, for a high-enough value of the parameter aB, the ion
interacts with the laser reservoir located at the left (L) end
whenever x � −|xB|, whereas it is connected to the reservoir
located at the right (R) end provided x � |xB|. The ion is not
directly connected to any bath in the intermediate region in
which −|xB| � x � |xB|. The parameters BL and BR quantify
the coupling to the corresponding bath and determine their
effective temperatures.

Assuming that the laser beams behave as Langevin thermal
reservoirs, and considering that the typical separations among
the ions are of the order of micrometers, we adopt a classical
description of the dynamics and express the equations of
motion for the α = (x, y, z) components of the position and
momentum coordinates of a given ion of mass Mi as:

q̇α,i = pα,i

Mi
,

ṗα,i = gα,i +
N∑

j �=i

f (i j)
α − 
i

[
B

(
qx,i ; ηL

α,i, η
R
α,i

) pα,i

Mi

−B
(
qx,i ; εL

α,i(t ), εR
α,i(t )

)]
for i = (1, . . . , N ),

(8)

where gα,i = −∂Vsec(qi )/∂qα,i is the external trapping force
along the α direction and f (i j)

α = − f ( ji)
α = −∂U (|qi −

q j |)/∂qα,i the Coulomb repulsion that the jth ion exerts on
the ith ion along such direction. The function 
i = 1(0) for
ions of the species A (B) has been introduced to differentiate
the action of the laser reservoirs between the two ion species.

The interaction with the Langevin reservoirs is character-
ized by the friction coefficients ηL,R

α,i and the stochastic forces
εL,R
α,i (t ). This force is assumed to correspond to a Gaussian

white noise that satisfies the statistical relationships〈
εL,R
α,i (t )

〉 = 0,〈
εL,R
α,i (t ) εL,R

β, j (t ′)
〉 = 2 DL,R

α,i δα,β δi, j δ(t − t ′), (9)

where 〈. . . 〉 denote the average over an ensemble of stochastic
trajectories and DL,R

α,i are the diffusion coefficients. Accord-
ing to the fluctuation dissipation theorem DL,R

α,i = kBηL,R
α,i T L,R,

with T L,R the temperature of the corresponding thermal reser-
voir.

In terms of the friction and diffusion coefficients the equa-
tions of motion (8) can be written as the following stochastic
differential equations:

dqα,i = pα,i

Mi
dt,

d pα,i =
⎡
⎣gα,i +

N∑
j �=i

f (i j)
α − 
i B

(
qx,i ; ηL

α,i, η
R
α,i

) pα,i

Mi

⎤
⎦dt

+
i B
(
qx,i ;

√
2 DL

α,i,

√
2 DR

α,i

)
dWα,i

for i = (1, . . . , N ), (10)

where dWα,i denote the Wiener processes associated with the
interactions with the laser reservoirs.

For small laser intensities, the friction coefficients ηL,R
α,i

and the diffusion coefficients DL,R
α,i can be obtained from the

Doppler cooling expressions [51]:

η
L(R)
α,i = −4 h̄

[
kL(R)
α,i

]2

[
IL(R)
α,i

IL(R)
0

] [
2 δ

L(R)
α,i /�

]
{
1 + 4

[
δ

L(R)
α,i

]2
/�2

}2 (11)

and

DL(R)
α,i = h̄2

[
kL(R)
α,i

]2

[
IL(R)
α,i

IL(R)
0

]
�{

1 + 4
[
δ

L(R)
α,i

]2
/�2

} . (12)

The ratio IL(R)
α,i /IL(R)

0 denotes the normalized intensity of the

laser beam acting on the ith ion along the α direction, kL(R)
α,i

is the corresponding laser wavelength, δ
L(R)
α,i = ω

L(R)
α,i − ω0 is

the detuning of the laser frequency ω
L(R)
α,i with respect to the

frequency ω0 of a selected atomic transition in the ion, and �

is the natural linewidth of the excited state in such transition.

B. Numerical experiments

In this work we consider bicrystals containing Mg+ ions,
which correspond to the species A that is connected to the
thermal reservoirs, and different ions of species B. For these
ions we select Ca+, Zn+, and Sr+. Then in the three bicrystals
the ions of species B are heavier than those of species A.

The Doppler cooling associated with the thermal reser-
voirs is applied to the atomic transition 3s2S1/2 → 3p2P3/2

of the 24Mg+ ions, with ω0/2π = 1072 THz and �/2π =
42.669 MHz [35]. To induce heat transport through the axial
direction we consider that the laser reservoirs located at both
ends have different detunings δL

α,i �= δR
α,i. Considering the

dependence of the limit temperature in the Doppler cooling
with the laser detuning, in order to generate an apprecia-
ble difference of temperature between both laser reservoirs
we fix the detuning in one of them sufficiently small. In
the numerical simulations we set δL

α,i = −0.02� for the left
reservoir located at x � −|xB| and δR

α,i = −0.1� for the right
reservoir located at x � |xB|. We consider the same laser
intensity IL(R)

α,i /IL(R)
0 = 0.08 on both reservoirs. The corre-

sponding friction coefficients are ηL = 6.79 × 10−22 kg/s and
ηR = 3.15 × 10−21 kg/s and the diffusion coefficients DL =
1.20 × 10−46 kg2m2/s3 and DR = 1.16 × 10−46 kg2m2/s3. In
the case of the laser cooling of a single isolated 24Mg+

ion, the resulting limit Doppler temperatures are T L =
DL/kBηL = 12.82 mK and T R = DR/kBηR = 2.66 mK. Thus
in the bicrystals the ions of species A will be connected to an
effective hotter bath on the left end and to a colder bath on the
right end.

To perform the numerical simulations, from now on we
will consider a system composed of N = 31 ions, with 18 of
them of species A (Mg+) and the remaining 13 of species
B (Ca+, Zn+, Sr+). The spatial distribution of the laser
reservoirs is set by the parameters aB = 1.0 × 107 μm−1 and
xB = 160 μm. To fix the initial conditions of the ions, we
consider a sequence of N small boxes centered along the axial
x direction so that each ion is initially at rest in a random
position inside one of these boxes. At both ends of the system
we place 3 boxes within the region |x| > |xB| where the
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FIG. 1. A scheme of the conformation of the initial positions of
the two ion species along the axial direction x. The colored regions
at both ends of the axial x direction denote the locations |x| > |xB|
where the two laser reservoirs are acting. The colors of the two
central ions is used below as reference in Figs. 4 and 5.

laser reservoirs are acting. These boxes are initially occupied
by ions of species A. The remaining 25 boxes located in
the intermediate region |x| < |xB| where the lasers do not
act are initially occupied alternately by ions of both species,
as indicated in Fig. 1. As we will show below, this initial
conformation of the two ion species persists only in bicrystals
exposed to sufficiently strong trapping conditions. A decrease
in confinement results in a rearrangement of the ions, which
may exhibit a significant spatial delocalization.

We solve numerically the 3N equations of motion (10)
to study the nonequilibrium dynamics of the ions in the
bicrystals Mg+-Ca+, Mg+-Zn+, and Mg+-Sr+ under different
trapping conditions. Figure 2 displays the secular frequencies
corresponding to each ion species in the three traps analyzed.
We consider two symmetrical Traps I and II, which have equal
transverse frequencies that are above the axial frequency,

(ωy = ωz ) > ωx. The transverse confinement acting on each
ion species is stronger in Trap I than in Trap II. In Trap III we
consider an asymmetric confinement in which (ωy �= ωz ) >

ωx. To set the secular frequencies (5) in each trap we consider
different values of the geometric factors (�x,�y,�z ) and
(�′

x,�
′
y,�

′
z ) and different amplitudes Vdc and Vrf of the

potentials applied to the trap electrodes. In the three traps we
set the rf drive frequency �/2π = 5.1 MHz and the geometric
constant κ = 8.44 × 104.

III. SPATIAL CONFIGURATIONS

Our interest is focused on the steady-state solution of
the equations of motion (10), from which the heat trans-
port properties can be extracted. To analyze the underlying
nonequilibrium dynamics in such state we first consider the
spatial probability density of the entire trapped bicrystal at
any location q = (x, y, z). To highlight the spatial regions
with high probability of finding the N ions, we use the local
distribution [10]

P(q) = 1

τss

∫ t+τss

t
dτ

{
1

N σ 3(2π )3/2

N∑
i=1

e−[q−qi (τ )]2/2σ 2

}
,

(13)

where τss is a sufficiently long time interval in the steady state,
t an arbitrary time value within such state, and σ a small
parameter giving the width of the three-dimensional Gaussian
kernel.
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FIG. 2. (a) The axial secular frequency ωx (5) of the different ion species in Traps I, II, and III as a function of the mass of the ion. (b) The
ratios of the transversal to axial frequencies for the different ion species in the three traps. The two symmetrical Traps I and II are on the diag-
onal, whereas the asymmetric Trap III is above. In Trap I: Vrf = 100V, Vdc = 0.373V, (�x, �y, �z ) = (0.4, −0.2, −0.2), and (�′

x, �
′
y, �

′
z ) =

(0, 3.854, −3.854). In Trap II: Vrf = 95V, Vdc = 0.8V, (�x,�y, �z ) = (0.2, −0.1, −0.1), and (�′
x,�

′
y,�

′
z ) = (0, 2.569, −2.569). In Trap III:

Vrf = 118V, Vdc = 0.286V, (�x, �y, �z ) = (0.05, 0.3, −0.35), and (�′
x, �

′
y, �

′
z ) = (0.187, 2.453, −2.64).
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FIG. 3. Spatial probability density P(q) [Eq. (13)] of the
Mg+-Zn+ bicrystal in (a) Trap I, (b) Trap II, and (c) Trap III, obtained
from a single stochastic realization. The positions q with values of
P(q) below 5% of its maximum value are not depicted. The total
extension of the system along the axial direction is approximately
420 μm in Trap I, 396 μm in Trap II, and 422 μm in Trap III. Notice
that in Trap III the ions are confined in the xy plane. In the numerical
simulations we set t = τss = 0.1 s and σ = 2 μm. The VESTA
software was used for the visualization of the spatial distributions
[52].

A. The same bicrystal in different trapping conditions

Figure 3 shows the steady-state spatial probability densities
(13) of the entire Mg+-Zn+ bicrystal in the three traps,
obtained from a single stochastic trajectory. The details of
these spatial probability densities for different stochastic real-
izations are not necessarily equally distributed across the trap,
but they all exhibit a similar overall qualitative appearance.
The different delimited components that make up the global
distribution do not necessarily correspond to specific individ-
ual ions but to space regions with a high density of probability
of finding the ions during the steady state.

As occurs with monocrystals, the effective dimensionality
of the system is determined by the trapping conditions. The
strongest transverse confinement in Trap I keeps virtually all
ions aligned very close to the axial direction. In this trap the
number of discrete dots arranged along the axis coincides with
the total number of strongly confined ions in the bicrystal.
Similarly to what has been observed in monocrystals, the de-
crease in the transverse confinement induces structural phase
transitions in which the ions can adopt two-dimensional and
three-dimensional spatial configurations. The symmetrical de-
crease of the two radial frequencies in Trap II results in the
emergence of a series of rings contained in the transverse
plane and centered along the x direction. Here again each of
the discrete dots arranged along the axial axis can be assigned

to a localized individual ion, whereas each of the rings can
contain more than one delocalized ion orbiting around that
axis. These rings are similar to those associated with the
helical configuration in monocrystals. Although unlike what
happens in such systems, in bicrystals there are ions that are
still confined on the axial axis in between the rings.

In Trap III the asymmetric decrease of the radial frequen-
cies triggers a structural phase transition to a two-dimensional
configuration in which ions dynamics is restricted to the plane
perpendicular to the transverse direction with the highest
trapping frequency. Some ions appear symmetrically arranged
on both sides of the axial axis, which is reminiscent of
the zigzag configuration observed in monocrystals. Although
unlike what happens in such systems, in the bicrystals the
two-dimensional configuration does not necessarily emerges
in the center where now there are still ions that persist aligned
on the axial axis.

In order to differentiate the dynamics of the two ionic
species in the bicrystal, we now analyze the steady spatial
distribution of the individual ions. Specifically, we consider
the spatial distribution of each ith ion along the α direction
given by [10]


i(α) ≡ 
i(αl )

= 1

τss

〈∫ t+τss

t
dτ

∫ αl +�/2

αl −�/2
dα δ[α − qα,i(τ )]

〉
,

(14)

where αl and � are the location of the center and the size
of a given spatial cell along such direction, respectively. To
obtain a quasicontinuous spatial distribution we set a series of
cα cells, with l = 1, . . . , cα , and a small-enough value of �.

The radial distributions 
i(y) and 
i(z) clearly distinguish
between the dynamics of the two ion species in the global
spatial probability densities shown in the Fig 3. As Fig. 4
shows, the lighter Mg+ ions exhibit a single zero centered
peak, indicating that they remain aligned along the axial
axis, whereas the heavier Zn+ ions can explore the transverse
directions as they are subjected to weaker confinement. These
are the ions that can experience the structural phase transitions
from the nearly string arrangement in Trap I to the three-
dimensional configuration exhibited in the symmetrical Trap
II and the two-dimensional one observed in the asymmetrical
Trap III. In Trap II the identical bimodal distributions in the
two radial coordinates, with two peaks of the same intensity
arranged symmetrically around zero, is characteristic of the
rings giving the helical configuration in monocrystals [10].
Similarly to the zigzag configuration in monocrystals, in Trap
III the heavier ions remain confined in the radial direction with
the highest trapping frequency and exhibit a bimodal distribu-
tion in the other transverse direction of lower confinement.
The two major peaks on both sides of the axial axis indicate
that the ions remain most of the time in the vicinity of the
minima of the global potential energy surface around that axis.
Although the small bump at the center of this distribution
indicates that these ions can also remain a significant amount
of time on the axial axis, something that does not occur in the
case of the zigzag configuration of monocrystals [10].
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FIG. 4. Steady radial distributions 
i(y) [(a) Trap I, (b) Trap
II, and (c) Trap III] and 
i(z) [(d) Trap I, (e) Trap II, and (f)
Trap III] [Eqs. (14)] corresponding to the same two internal ions
of the Mg+-Zn+ bicrystal in the different traps. The selected ions
initially occupy the two central colored positions in Fig. 1. The
green line is the central Zn+ ion and the red line is the Mg+ ion
to the right of such central ion. We consider cy = cz = 1000 cells
with size � = 0.04 μm along both radial directions, set the time
values t = τss = 0.1 s, and average over more than 400 stochastic
trajectories. For a better analysis, the intensity of the peaks of the Zn+

ion distribution has been multiply by a factor of 4 in all the panels.

B. Different bicrystals in the same trapping conditions

So far we have analyzed the dynamics of a given bicrystal
in different trapping conditions. We now consider bicrystals
containing the same species A but different species B confined
in identical traps. We study the effects of the mass dependence
of the trapping frequencies on the dynamics.

Figure 5 shows the steady spatial distributions 
i(α)
[Eq. (14)] for several individual ions of the Mg+-Ca+,
Mg+-Zn+, and Mg+-Sr+ bicrystals confined in the symmetri-
cal Trap II.

Similarly to the zigzag and helical distributions in
monocrystals [10], the distributions 
i(x) evidence a signif-
icant delocalization of the internal ions of both species along
the axial axis of the trap. The series of peaks of the lighter ions
of species A indicate that they can exchange their positions
along this axis, whereas the more widespread distributions of
the heavier ions of species B correspond to the delocalization
of these ions along the series of external rings arranged around
the axial axis, see Fig. 3. The increase in the mass of the ion
of species B contributes to increase the delocalization of the
ions of both species, which can thus explore a larger portion
of the axial region encompassed by the entire trapped system.
This increased axial delocalization of ions may eventually be
responsible for the ions of species A leaving the spatial region
in which the laser reservoirs are acting.

The analysis of the spatial distributions 
i(y) and 
i(z)
shows that the increase in the mass of the ions of species
B also leads to a greater transverse delocalization of these
ions, which in a symmetrical trap occupy rings of an ever-
increasing radius. Whereas the lighter ions of species A are
increasingly confined on the axial axis, see Fig. 5. Therefore,
the increase in the mass of the ions of species B contributes
to making the spatial segregation of the two ion species
more significant due to the mass dependence of the trapping
frequencies.

IV. TEMPERATURE PROFILES

In this section we analyze the effect of the mass depen-
dence of the trapping frequencies on the steady-state temper-
ature profiles across bicrystals in which ions of the species A
can interact with different laser reservoirs that are located at
both ends of the axial direction, see Fig. 1. The kinetic tem-
peratures can be obtained from the momentum coordinates
{p}N = (p1, . . . , pN ) of the ions in the nonequilibrium steady
state reached under the action of the two thermal reservoirs.

Taking into account the possible ion delocalization for cer-
tain trapping conditions, we consider a continuous description
to define the steady local kinetic temperature T (x) across the
axial direction in terms of the equipartition theorem as [10]:

T (α) ≡ T (αl ) = 2

3 kB

〈 ∑N
i=1

∫ t+τss

t
dτ

∫ αl +�/2

αl −�/2
dα δ

(
α − qα,i(τ )

)
Ek (pi(τ ))

〉
〈 ∑N

i=1

∫ t+τss

t
dτ

∫ αl +�/2

αl −�/2
dα δ

(
α − qα,i(τ )

) 〉 , (15)

where Ek (pi ) is the kinetic energy of the ith ion and kB the
Boltzmann constant.

Figure 6 shows the axial kinetic temperature profiles for
the Mg+ monocrystal and the different bicrystals confined in
the symmetrical Trap II and the asymmetrical Trap III. Due to
the small size of the systems the temperature profiles display
significant boundary effects, mainly in the outermost locations
where the laser reservoirs are acting and in their adjacent
regions. We focus on the analysis of the temperature profile
in the central region where it becomes strongly sensitive
to the mass of the heavier ion species. Within this region

the kinetic temperature changes from a nearly flat profile in
the Mg+ monocrystal to profiles with nonzero gradients in
the bicrystals. Similarly to monocrystals [10], the delocalized
dynamics of the heavier ions across the rings in the sym-
metrical traps results in temperature profiles with uniform
gradients, whereas their delocalization in the planar zigzag
type configurations of the asymmetrical traps corresponds to
nonfully linear temperature profiles. Both in the symmetrical
and asymmetrical traps the magnitude of the temperature
gradient becomes larger with the increase of the mass of the
heavier ion species. In the case of the asymmetrical trap the
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FIG. 5. Left: Steady longitudinal distribution 
i(x) [Eqs. (14)] for the same two ions of the (a) Mg+-Ca+, (b) Mg+-Zn+, and (c) Mg+-Sr+

bicrystals confined in Trap II. The colors of the two lines correspond to the colored ions in Fig. 1. The green line is the ion of species B (Ca+,
Zn+, Sr+) that initially occupies the central location in the system. The ion of species A (Mg+) that is initially to the right of this central ion
correspond to the red line. For a better analysis, the intensity of the peaks of the ions of species B has been multiply by a factor of 3 in the
three bicrystals. Right: Steady radial distribution 
i(y) (14) for the two ions considered in the left panel for the (d) Mg+-Ca+, (e) Mg+-Zn+,
and (f) Mg+-Sr+ bicrystals confined in Trap II. Due to the axial symmetry both radial distributions 
i(y) and 
i(z) coincide. The same line
colors are used as in the left panel. For a better analysis, the intensity of the peaks of the ion of species B has been multiply by a factor of 2 in
the Mg+-Ca+ bicrystal, a factor of 6 in the Mg+-Zn+ bicrystal, and a factor of 8 in the Mg+-Sr+ bicrystal. We consider cx = cy = cz = 1000
cells, with size � = 0.5 μm along the axial direction and size � = 0.04 μm along the radial directions. In the numerical simulations we set
the time values t = τss = 0.1 s and average over more than 400 stochastic trajectories.

temperature profile also bends further within the small size of
the system, see Fig. 6.

Similarly to monocrystals [10], these results reveal a direct
correlation between temperature profile through the axial
direction and the amount of ion delocalization within the trap.

In monocrystals delocalization emerges due to changes in
trapping conditions by decreasing the transverse frequencies,
whereas for a given trap with fixed secular frequencies, we
have just shown that an analogous delocalization arises when
considering bicrystals containing heavier ion species. The

-200 -150 -100 -50 0 50 100 150 200
x (μm)

2

4

6

8

10

12

T
 (

m
K

)

Mg+

Mg+- Ca+

Mg+- Zn+

Mg+- Sr+

(a)

-200 -150 -100 -50 0 50 100 150 200
x (μm)

2

4

6

8

10

12

14

T
 (

m
K

)

Mg+

Mg+- Ca+

Mg+- Zn+

(b)

FIG. 6. The steady-state kinetic temperature profiles T (x) [Eq. (15)] across the axial direction for the Mg+ monocrystal and the different
bicrystals confined in (a) Trap II and (b) Trap III. The colored areas are the regions where the two laser reservoirs are acting. The results
were obtained from the numerical simulation of the dynamics in the interval [0.1,0.2] s of the steady state and the average over more than 600
stochastic trajectories.
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FIG. 7. Central gradient of the axial temperature profile for
the Mg+ monocrystal and the Mg+-Ca+, Mg+-Zn+, and Mg+-Sr+

bicrystals confined in Traps I, II, and III, as a function of the
Mg+ ion mass in the monocrystal and the mass of the ion of the
species B in the bicrystals. The central gradients were obtained from
the slopes of the corresponding temperature profiles in the axial
interval [−100, 100] μm. The green horizontal line corresponds
to the Fourier temperature gradient given by (T R − T L )/2xB. The
same symbols as in Fig. 2 have been used to denote the different
traps. Dashed lines are drawn to guide the eye.

magnitude of the temperature gradient increases as the range
of delocalization of internal ions continues to expand and
tends to stabilize once it covers the entire space available to
the trapped system.

To summarize, we now analyze the central gradient of the
axial temperature profile in the Mg+ monocrystal and the
different bicrystals in the three traps, see Fig. 7. In the case
of the Mg+ monocrystal, the transverse frequencies in Traps
I and III are high enough to keep all the ions tightly confined
around their equilibrium positions along the axial axis, and,
consequently, this system displays an almost zero tempera-
ture gradient [5,10], whereas the small nonzero temperature
gradient of this monocrystal in the weaker confinement of
Trap II emerges from the ion delocalization across the helical
configuration [10]. A very small temperature gradient is also
observed in the Mg+-Ca+ bicrystal confined in Trap I, in
which both ion species remain strongly confined along the
axial axis according to the fixed initial ion conformation
shown in Fig. 1. The noticeable nonzero temperature gradients
emerge with the ion delocalization under weaker trapping
conditions and/or in bicrystals with heavier species B ions.

The three traps evidence a direct correspondence between
the magnitude of the central temperature gradient and the
amount of ion delocalization. So the more delocalized the ions
are in the trap, the larger the magnitude of such gradient. In the
case of the two symmetrical traps, the weaker confinement in
Trap II results in a higher ion delocalization of the heavier ion
species within all bicrystals, both in the axial and transverse
directions, and therefore the magnitude of the temperature
gradients is larger than those of Trap I. Also, the bicrystal
with the heaviest ion species confined in Trap II, which is

the system that exhibits the highest ion delocalization, is the
one with the central temperature gradient closest to value
(T R − T L )/2xB predicted by a Fourier-type behavior, see
Fig. 7.

The observed increase in the magnitude of the temperature
gradient with a higher ion delocalization occurs provided the
trapping conditions are strong enough to keep ions of species
A at the ends of the system where the thermal reservoirs are
acting. This may not happen in bicrystals containing very
heavy ions and/or in traps with very weak confinement, due
to the displacement of the ions of species B toward both ends
where the laser reservoirs that act on the ions of species A
are located. Then due to Coulombian repulsion, these lighter
ions are forced to move toward the internal region where
they do not interact with the thermal reservoirs. When this
occurs the system no longer has the necessary configuration
for a heat conduction process to be established. This effect,
which has been already observed in the case of the Mg+-Sr+

bicrystal confined in the asymmetrical Trap III, is expected
to eventually occur also in symmetrical traps. Although for
bicrystals with much heavier B species ions, as they could
reach the delocalization necessary for this to happen.

In the asymmetric Trap III, the apparent decrease in
the magnitude of the temperature gradient in the Mg+-Zn+

bicrystal, with respect to value obtained in the more localized
Mg+-Ca+ bicrystal, is only due to the bending of the temper-
ature profile characteristic of planar configurations, see Fig. 6.
For larger systems this effect would become less relevant, so
that the predicted increase in magnitude of the temperature
gradient associated with a higher ion delocalization would be
observed.

An interesting issue is to analyze the dependence of the
behavior of the kinetic temperature profiles on the parame-
ters that define the interaction with the thermal baths. Fig-
ure 8 shows the variation of the temperature profile of the
Mg+-Ca+ bicrystal confined in Trap II as the laser inten-
sity corresponding to the R-bath of the coldest temperature
changes. We consider intensities sufficiently small so that
the Doppler cooling expressions Eqs. (11) and (12) can be
applied. According to these expressions, a decrease in the
laser intensity decreases both the friction coefficient ηR and
the diffusion coefficient DR while the temperature limit T R is
not modified. As the temperature profile through the system
results from the combined action of the two thermal baths,
the weaker coupling of the ions to the colder bath reinforces
the effect of the hotter one. Thus, the temperature of the
ions increases. Also, this increase makes the boundary effects
more significant in the proximity the coldest bath, where the
gap between the temperatures of the most external ions that
are coupled to the laser reservoirs and the temperatures of
their closest internal neighbors becomes larger, while, on the
other hand, such gap is being reduced in the boundary of
the hotter bath. As a result, the central gradient of the axial
temperature profile decreases slightly as the coupling to the
colder bath becomes weaker, see Fig. 8. Both the monocrystal
and the different bicrystals exhibit similar behavior. Thus, the
differences between the central temperature gradients of the
different ion species shown in Fig. 7 are robust to changes in
the strength of the coupling to the thermal reservoirs.
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A. Local kinetic temperature on small scales

Once the global behavior of the steady kinetic temperature
profiles along the axial direction has been analyzed for several
bicrystals confined in different trapping conditions, we now
analyze their structure on small scales. As Fig. 9 shows,
there is clear correlation between the behavior of the kinetic
temperature T (x) [Eq. (15)] and the total spatial distribution

�(x) =
N∑

i=1


i(x), (16)

and the total kinetic energy distribution

εk (x) = 1

τss

〈 N∑
i=1

∫ t+τss

t
dτ

∫ αl +�/2

αl −�/2
dαδ[α−qα,i(τ )]Ek[pi(τ )]

〉
(17)

of the ions through the axial direction of the trap.
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FIG. 9. (a) Total steady longitudinal distribution �(x) [Eq. (16)],
(b) total steady kinetic energy distribution εk (x) [Eq. (17)], and
(c) and the steady kinetic temperature profile T (x) [Eq. (15)] for the
Mg+-Zn+ bicrystal confined in Trap II.

At both ends of the system the temperature profile displays
a series of separate small segments centered in each of the
locations of ion confinement. The span of each segment is
determined by the size of the corresponding peak in the spatial
distribution. At the center of the segments, where the spatial
distribution is maximum, the temperature value tends to stabi-
lize, while it presents variations in the edges of each segment
as the probability of presence of ions decreases sharply. The
empty spaces between the most external segments corre-
spond to positions that are not visited by the ions during the
dynamics.

As the axial coordinate moves toward the center of the
chain, the probability of presence of ions between the peaks
of the spatial distribution begins to be significant due to
their increasing delocalization. In this intermediate region
of the system, the partial overlap of the edges of adjacent
segments results in an oscillating kinetic temperature profile
at small scales. Thus, these small variations of the kinetic
temperature evidence the incipient transit of delocalized ions
between two neighboring local confinement regions across the
axial direction of the trap. They are analog to the variations
in the temperature profiles reported in the analysis of heat
transport in polygonal billiards that confine freely evolving
particles [53,54] rather than being similar to the oscillating
temperature profiles observed in Fermi-Pasta-Ulam chains
with alternating light and heavy masses, which are strongly
confined around their equilibrium positions [55,56]. As Fig. 9
shows, in trapped ion systems the oscillation at small scales
fades and the temperature profile smooths in the vicinity of
the center of the system, as the spatial distribution of the
ions becomes increasingly uniform due to their widespread
delocalization across the axial direction of the trap.

Considering that the locations of maximum probability of
presence of ions are also those of maximum kinetic energy,
see Fig. 9, they must also correspond to the locations of the
local minima of the potential energy surface that confines the
system. Thus, the behavior of the local kinetic temperature
on small scales is determined by the spatial distribution of
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FIG. 10. (a) The potential energy surface V (q) [Eq. (18)], with
the parameters c6 = 2.5 × 1010 Jm−6, c4 = −0.4 Jm−4, and c2 =
1.0 × 10−18 Jm−2. The colored regions denote the spatial distribution
of the two thermal reservoirs, located at q � 0 (L) and and q � 0 (R).
(b) Steady spatial distribution of a Brownian particle with the mass M
of the Mg+ ion, confined within the potential energy surface (a) and
coupled to the two thermal reservoirs. To establish the interaction
with the two Langevin baths we have fixed the friction coefficients
ηL = 6.79 × 10−22 kg/s and ηR = 3.15 × 10−22 kg/s, and the dif-
fusion coefficients DL = 1.80 × 10−46 kg2m2/s3 and DR = 4.05 ×
10−46 kg2m2/s3. The corresponding limit temperatures are T L =
DL/kBηL = 19.23 mK and T R = DR/kBηL = 9.32 mK, respectively.
The results were obtained from the numerical simulations of the
dynamics in the interval [3.84 × 10−3, 7.68 × 10−3] s of the steady
state and the average over more than 3 × 104 stochastic trajectories.
(c) The local kinetic temperature T (x) [Eq. (15)] corresponding to
the numerical simulation described in (b). The red dashed lines indi-
cate the temperatures T L and T R of the two thermal reservoirs. The
vertical dashed lines indicate the position coordinates corresponding
to the four histograms shown in Fig. 11.

ions across the surface of the trapping potential, according
to the energy supplied by the thermal baths. Specifically, the
variations of the kinetic temperature at small scales arise due
to the transit of delocalized ions through the different barriers
of the interaction potential.

To illustrate the correlation between the behavior of the
kinetic temperature on small scales and the spatial delocal-
ization of the particles through the structure of the surface of
the trapping potential, next we analyze a simple model that
makes it explicit.

1. Model: Brownian particle confined in a three-well potential
and coupled to two thermal reservoirs

We consider a one-dimensional system composed of a sin-
gle particle of mass M and with position coordinate q, which
is confined within the three-well potential energy surface

V (q) = c6
q6

6
+ c4

q4

4
+ c2

q2

2
. (18)

The particle is coupled to two different laser reservoirs that are
spatially distributed according to the function B(q; BL, BR)
[Eq. (7)], with xB = 0, see Fig. 10.
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FIG. 11. The histograms (red lines) giving the distribution of
the momentum of the particle at different position coordinates and
the Gaussian fitting of the data (black lines). The histogram (a) H1
corresponds to the position coordinate q = 3.591 μm, (b) H2 to q =
−3.591 μm, (c) H3 to q = 0 μm, and (d) H4 to q = −2.508 μm.
The histograms H1 and H2 were obtained from a data sample of
3 × 106 elements, the histogram H3 from 419 016 elements, and the
histogram from 77 532 elements.

As in the trapped ion system, we adopt a classical de-
scription of the dynamics and assume that the laser beams
behave as Langevin thermal reservoirs. Then the equations of
motion for the position and momentum coordinates (q, p) can
be written as

dq = p

M
dt,

d p =
[
−∂V

∂q
− B(q ; ηL, ηR)

p

M

]
dt

+B(q ;
√

2 DL,
√

2 DR )dW. (19)

As Fig. 10 shows, the confinement of the particle around
the positions of the local minima of the potential energy
surface leads to plateaus in the kinetic temperature profile.
As in the case of the trapped ion system, these plateaus are
centered in the positions of greatest probability of presence
of the particle and their span is determined by the size of the
corresponding peak in the spatial distribution. The tendency
of the particle to occupy the positions of the thermal bath with
the lowest temperature is reflected in the best definition of
the plateau of the temperature corresponding to the potential
energy well located in that region. At the unstable coordinates
of the dynamics located around the maxima of the barriers of
the potential energy surface, where the probability of presence
of the particle becomes extremely small, the temperature can
exhibit significant variations. Paradoxically, in these regions
the local kinetic temperature can even take values that are
outside the range set by the temperatures of two thermal
reservoirs, see Fig. 10.

An interesting question is whether the differentiated be-
havior of the kinetic temperature around the stable and un-
stable points of dynamics is related to the validity of local
thermal equilibrium. To analyze this issue we focus on the
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TABLE I. The position coordinate q, the kurtosis κ [Eq. (20)], the kinetic temperature given by the equipartition theorem according
to Eq. (15), and the temperature obtained from the fitting of the histograms giving the momentum distributions to the Gaussian canonical
distribution h(p) ∝ e−p2/2MkBT for the different histograms shown in Fig. 11.

Histogram q(μm) κ T (mK) [Eq. (15)] T (mK) (canonical distribution)

H1 3.591 1.107 × 10−3 9.33 9.39
H2 −3.591 −6.442 × 10−2 19.03 19.40
H3 0 −5.861 × 10−2 10.83 10.90
H4 −2.508 −0.424 13.26 15.31

steady-state distribution of the momentum of the particle at
different position coordinates. As is known, in the locations
where the local thermal equilibrium is satisfied, such distri-
bution should exhibit a Gaussian profile characteristic of the
canonical distribution [57]. Figure 11 shows the histograms
that give the momentum distribution at different locations
across the structure of the potential energy surface depicted
in Fig. 10. The figure also includes the best Gaussian fitting of
the data.

As a criterion to quantify the deviation of each momentum
distribution from the Gaussian profile of the canonical distri-
bution, we consider the kurtosis [57]

κ = 〈(p − p̄)4〉
〈(p − p̄)2〉2

− 3, (20)

see Table I. A Gaussian distribution gives κ = 0, whereas κ >

0 (< 0) corresponds to a distribution with a narrower (wider)
central peak and wider (narrower) tails.

In the position coordinates close to the minima of the
potential energy surface, where the probability of presence of
the particle is significant, both (i) the sufficiently small values
of the kurtosis and (ii) the agreement between the kinetic tem-
perature obtained from the equipartition theorem according to
Eq. (15) and the value resulting from the Gaussian fitting of
the momentum distribution to a function h(p) ∝ e−p2/2MkBT

characteristic of the canonical distribution are consistent with
local thermal equilibrium, while in the case of the unstable
positions of the dynamics around the barriers of the potential,
the numerical results indicate that both the kurtosis and kinetic
temperature values deviate from those prescribed by local
thermal equilibrium. Notice that obtaining conclusive results
concerning these unstable regions, where the probability of
presence of the particle can extremely small, becomes a
difficult task due to the very scarce data sample that can
be extracted from the dynamics to analyze the momentum
distribution. This issue requires a further analysis in future
work.

To summarize, the analysis of this simple model of a single
Brownian particle confined within a known potential energy
surface has shed light on the behavior on small scales of
kinetic temperature profiles in trapped ion systems. Specifi-
cally, their variations at small scales are inherent to the transit
of the delocalized ions through the structure of the trapping
potential energy surface. The kinetic temperature tends to
stabilize around the confinement positions dictated by the
local potential wells, where the results are consistent with
local thermal equilibrium. While the temperature variations

at small scales occur around the local barriers of the trapping
potential where the probability of presence of ions becomes
very small. In these regions of instability the analysis of
the momentum distribution indicates a lack of local thermal
equilibrium.

According to the numerical results obtained in the anal-
ysis of the validity of local thermal equilibrium in the one-
dimensional model, the empty spaces between the outermost
segments in the kinetic temperature profiles shown in the
trapped ion systems, as well as the variations leading to the
small oscillations in the intermediate axial region, see Figs. 6
and 8, would correspond to regions of lack of local thermal
equilibrium. These regions, where the probability of presence
of ions becomes very small, in this three-dimensional system
would be associated with local maxima of the global potential
energy surface defined by the trap and the Coulomb repulsion.
We stress that this interesting issue requires further considera-
tion in future work. In this manner, the role of dimensionality
and of more complex dynamics in three-dimensional systems
can be further analyzed in relation to the local thermal equi-
librium assumption and transport properties, as suggested in
Ref. [57].

V. CONCLUSIONS

We have considered two-species trapped ion systems ex-
posed to a temperature gradient and analyzed their behavior
in the nonequilibrium steady state. We have assumed spatially
distributed thermal reservoirs that are emulated by different
laser beams located at both ends of the axial axis of the
trap and tuned to act only on one of the two ion species. To
study the dynamics we have considered a three-dimensional
model which fully takes into account the many-body Coulomb
interaction among the ions and numerically simulated the
classical Langevin equations.

We have illustrated the spatial segregation of the two simul-
taneously confined ion species due to the mass dependence
of the secular frequencies of the trap. The analysis of the
spatial probability densities in the steady state has shown
that the presence of the heavier ion species in the bicrystals
enhances the ion delocalization, in comparison with the one
observed in the lighter ion monocrystal with the same num-
ber of components and under identical trapping conditions.
The lighter ions in the bicrystal remain strongly confined
around equilibrium positions arranged along the axial trap
axis, whereas the weaker confinement acting on the heavier
ions allows them to undergo structural phase transitions and
adopt two-dimensional and three-dimensional configurations
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in which they can exhibit a high delocalization. In symmet-
rical traps with the same transverse frequencies these heavier
ions are delocalized in a series of rings arranged perpendicular
to the axial axis, similarly to those corresponding to the helical
configuration in monocrystals. In the case of asymmetrical
traps with unequal transverse frequencies the heavier ions are
delocalized in planar configurations arranged on both sides of
the axial axis and contained in the plane perpendicular to the
direction with the highest frequency, similarly to the zigzag
configuration characteristic of monocrystals.

We have analyzed the steady-state kinetic temperature pro-
files for bicrystals exposed to trapping conditions leading ion
conformations of different dimensionality. Under sufficiently
strong confinement conditions in which the ions of the two
species are confined along the axial axis of the trap the
temperature exhibits the characteristic flat profile of harmonic
systems. The delocalization that arises as a consequence of
the relaxation of the trapping conditions and/or the presence
of heavier ions leads to the appearance of temperature profiles
with nonzero gradients. As in monocrystals, such gradient
remains uniform in symmetric traps, whereas in asymmetric
traps the temperature profiles bend and are not fully linear in
the bulk.

The analysis of the central gradient of the tempera-
ture profile has shown that its magnitude increases as the
range of delocalization of the ions across the trap becomes
more extensive. We have shown that a higher ion delocal-
ization approaches the magnitude of the temperature gradient
in the bulk to the value expected in a Fourier-type behavior.
The gradient closest to this limit value has been obtained for
the bicrystal containing the heaviest ion species confined in
the symmetrical trap of weaker transverse confinement.

We have also shown the correlation between the be-
havior of the kinetic temperature on small scales and the
spatial delocalization of the ions through the structure of
the trapping potential energy surface. This has been made
explicit by analyzing a simple model of a Brownian par-
ticle confined within a known potential energy surface in
nonequilibrium due to interaction with two different thermal
baths.

Our results indicate a possible limitation in the design of
an experimental setup to study heat transport in a trapped
ion system. Specifically, the parameters of the trap and the
masses of the ion species should be such that the confinement
is strong enough to maintain ions of species A confined at
the ends where the thermal reservoirs are located. As it has
been shown, an excessive increase in the ion delocalization
can cause a displacement of the ions of species B toward
the ends and an accumulation of the ions of species A to
the internal region where they do not interact with the baths.
Thus, the necessary conditions for an energy transport through
the system would not be met. Our analysis indicates that to
avoid this effect, symmetric traps in which the two transverse
confinement frequencies of each ion species are equal would
be more convenient to perform heat transport experiments
than traps with unequal transverse confinement.
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