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Tuning heat transport in trapped-ion chains across a structural phase transition
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We analyze the heat transport in an ion chain that is confined in a strongly anisotropic Paul trap. To drive a heat
current across the chain different pairs of counterpropagating laser beams are applied to the ions on the edges.
The lasers behave as heat reservoirs operating at different temperatures, and a nonequilibrium heat flow can be
sustained. The control of the spatial distribution of the ions in the chain by variation of the trapping frequencies
makes ion chains an ideal testbed to study heat transport properties in finite open systems of low dimensionality
with tunable nonlinearities. We explore heat transport across a structural phase transition between the linear and
zigzag configurations, identifying the condition for optimal heat transport.
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I. INTRODUCTION

Ultracold ion Coulomb crystals represent one of the most
promising platforms for the simulation of many-body physics
thanks to the high degree of spatial and temporal control of
mesoscopic ion crystals they afford us [1–3]. Recent years
have seen a shift away from the study of ground and thermal
state properties, towards the exploration of the potential role of
ion traps as a testbed for models of nonequilibrium statistical
mechanics.

In this context it is important to recognize that, in addition
to the electronic spin degrees of freedom, trapped ions also
possess motional degrees of freedom that can exhibit highly
nontrivial static and dynamical properties including classical
and quantum phase transitions. Indeed, ion Coulomb crystals
confined in ion traps may support a wide variety of phases
including a linear chain and a doubly-degenerate zigzag phase,
extending further to increasingly complex configurations
in two and three spatial dimensions [4–6]. The associated
structural phase transitions between those configurations are
generally of first order, with the exception of the linear-to-
zigzag phase transition which is known to be of second order
[7–9]. As a symmetry breaking scenario, it provides a natural
testing ground for universal dynamics of phase transitions and
topological defect formation [9–12], recently explored in the
laboratory [13–16].

Another fundamental setting in nonequilibrium statistical
mechanics considers the thermal transport in low-dimensional
systems, which exhibits a rich variety of anomalous features,
including the breakdown of Fourier’s law of heat conduction,
instances in which subdiffusive and superdiffusive behavior
can be observed [17–19], as well as the divergence of the
thermal conductivity with the system size [20,21]. Most
rigorous theoretical results have been obtained for exactly solv-
able quasifree models while systems with nonlinearities are
typically exceedingly difficult to treat. Equally, the controlled
generation of nonlinear physics in mesoscopic ion crystals is
nontrivial and much recent progress has concerned harmonic
models of complex networks and trapped-ion chains [22–24].
The richest phenomenology, however, can be expected in

nonintegrable models [25] which mandates the development
of both theoretical and experimental methods for their exami-
nation.

In this work, we advance further the case for trapped ions as
a model system for the examination of challenging problems
in mesoscopic physics by considering continuously driven ion
chains between two thermal reservoirs as a platform in which
to explore heat transport across an ion Coulomb crystal that
experiences a structural phase transition.

We describe a realistic experimental configuration which is
quite reminiscent of the lattice models extensively studied in an
attempt to provide a rigorous derivation of Fourier’s law from
a microscopic Hamiltonian description [20,21]. While most
theoretical studies have focused on one-dimensional chains of
oscillators with nearest-neighbor interactions, we are dealing
with a model system including both the external substrate
potential of the trap, and the full Coulomb interparticle
interaction. The interplay between these two terms, which
can be experimentally controlled by changing the trapping
frequencies, leads to a rich dynamics that ranges from the very
stable linear confinements to the strong instabilities arising in
the phase transitions.

We will show that the quasilinear configurations exhibit a
dynamics dictated by the trapping potential, and therefore their
transport properties resemble that of homogeneous harmonic
chains [20,21]. As the ion chain crosses the transition from
the linear to zigzag phase, the increasing role of the Coulomb
interaction induces both significant nonlinearities and axial-
transverse mode coupling which can lead to qualitative
changes in both the local temperature profile and the total heat
flux through the chain that may be observed experimentally.

The paper is organized in the following way. In Sec. II
we introduce a model to describe the system dynamics.
Section III provides a discrete approach to define the heat flux
and the local kinetic temperature across the ion chain in terms
of dynamical variables. In Sec. IV we fix the model parameters
according to a realistic experimental setup and present the
numerical results. We analyze the local temperature and the
total heat flux in the proximity of the linear-to-zigzag phase
transition, as a function of the trap frequency ratio. A spectral
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analysis of the steady evolution of the coordinates of the inner
ions in the chain is also presented. Sec. V puts together the
main conclusions of this paper.

II. THE SYSTEM DYNAMICS

We consider an effectively two-dimensional system com-
posed of N ions of mass m, charge Q, positions qn =
(qx,n,qy,n) and momenta pn = (px,n,py,n), with n = 1, . . . ,N ,
which are confined in a trap with axial frequency ν along
the x axis and transverse frequency νt along the y axis. The
Hamiltonian of the system can be written as

H = 1

2m

N∑
n=1

(
p2

x,n + p2
y,n

) + V. (1)

The interaction potential V accounts for both the harmonic
trap and the Coulomb repulsion, and is given by

V = m

2

N∑
n=1

(
ν2q2

x,n + ν2
t q

2
y,n

)

+ 1

2

(
Q2

4πε0

) N∑
n=1

N∑
l �=n

1

|qn − ql| . (2)

A quasilinear confinement of the ions along the x axis can
be achieved by considering a strongly anisotropic trap, with
νt � ν. We note that, at variance with lattice systems, none
of the ions are pinned, which allows for an intricate interplay
between axial and radial modes of motion.

We assume that the dynamics due to the external Doppler
cooling lasers acting on the ions can be modeled as Langevin
thermostats. This together with the typical separations between
the ions (generally of the order of microns) justifies an
intrinsically noisy classical description of the dynamics,

dqμ,n = pμ,n

m
dt,

dpμ,n = −
(

∂V
∂qμ,n

+ ημ,n

m
pμ,n

)
dt + √

2 Dμ,n dWμ,n, (3)

where ημ,n and Dμ,n are the friction and diffusion coefficients,
respectively, dWμ,n denote the Wiener processes resulting
from the Gaussian white-noise forces εμ,n(t) associated with
the interaction with the laser beams, which satisfy 〈εμ,n(t)〉 =
0 and 〈εμ,n(t) εμ,n(t ′)〉 = 2 Dμ,n δ(t − t ′), and μ = (x,y).

For small laser intensities the friction and diffusion coeffi-
cients can be obtained from the Doppler cooling expressions
[26]

ημ,n = −4�k2
μ,n

(
Iμ,n

I0

)
(2δμ,n/�)

[1 + 4δ2
μ,n/�2]2

,

(4)

Dμ,n = �
2k2

μ,n

(
Iμ,n

I0

)
�[

1 + 4δ2
μ,n/�2

] ,

where Iμ,n/I0 is the normalized intensity of the laser beam
acting on the n ion along the μ direction, kμ,n is the corre-
sponding laser wavelength, δμ,n = ωμ,n − ω0 is the detuning
of the laser frequency ωμ,n with respect to the frequency ω0

of a selected atomic transition in the ions, and � is the natural
linewidth of the excited state in such a transition.

The analysis of the system dynamics can be simplified
considering dimensionless variables that lead to a single
parameter interaction potential V , determined by the ratio of
the trap frequencies α = νt/ν; see Appendix A.

III. HEAT FLUX AND LOCAL KINETIC TEMPERATURE

A discrete definition of the heat current through the chain
can be obtained from the local energy density associated with
each ion [20,21], which can be written as

hn = 1

2m

(
p2

x,n + p2
y,n

) + V (qn) + 1

2

N∑
l �=n

U (|ql − qn|), (5)

where V represents the harmonic trap and U the Coulomb
term of the interaction potential V given in Eq. (2). The time
derivative of hn leads to the discrete continuity equations

dhn

dt
=

N∑
l<n

jn,l −
N∑

l>n

jl,n + jB,n, (6)

where

jn,l = − 1

2m

∑
μ={x,y}

∂U (|ql − qn|)
∂qμ,n

(pμ,n + pμ,l) (7)

can be identified as the energy current from the l ion to the n

ion. For the n ion, the first term in Eq. (6) corresponds to the
total energy current coming from the ions on the left, whereas
the second term is the total energy current going to the ions on
the right; see Fig. 1.

The last term

jB,n =
∑

μ={x,y}

pμ,n

m

(
−ημ,n

m
pμ,n + εμ,n

)
(8)

is the energy current from the laser reservoirs.
The steady-state average of Eq. (6) implies the balance

N∑
l<n

〈jn,l〉 + 〈jB,n〉 =
N∑

l>n

〈jl,n〉 (9)

between the average rate at which each ion receives energy
from the ions on the left and the laser beams, and the average
rate at which such ion transfers energy to the ions on the right.
The average of the energy currents from the reservoirs can be
obtained using Novikov’s theorem [27],

〈jB,n〉 = 1

m2

∑
μ={x,y}

(−ημ,n

〈
p2

μ,n

〉 + m Dμ,n

)
. (10)

jB,n

jn,n−2 jn,n−1 n+1,nj n+2,nj

n−2
n−1 n+1 n+2n

FIG. 1. (Color online) An illustration of some of the energy
currents associated with the n ion in the chain.
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The total heat current can be derived from a discrete
description of the continuity equation [20,21]

∂

∂t
h(q,t) + ∇ · j(q,t) =

N∑
n=1

jB,n(t)δ(q − qn), (11)

by taking the energy and heat flux densities as

h(q,t) =
N∑

n=1

hn(t)δ(q − qn), j(q,t) =
N∑

n=1

jn(t)δ(q − qn),

(12)

respectively, with hn being the local energy density defined in
Eq. (5) and jn the local flux. A Fourier analysis of Eq. (11)
leads to

jn(t) = qn

(
dhn

dt
− jB,n

)
+ hn

dqn

dt
. (13)

Then the total heat flux, obtained by integration of the flux
density over the chain volume, reads

J(t) = 1

m

N∑
n=1

hnpn +
N−1∑
n=1

n∑
l=1

(qn+1 − ql)jn+1,l . (14)

In the steady state, the averaged total heat flux is determined by
just the local fluxes coming from the reservoirs, and applying
Novikov’s theorem [27] it follows that

〈J〉 = −
N∑

n=1

〈qnjB,n〉

= 1

m2

N∑
n=1

∑
μ={x,y}

(
ημ,n

〈
p2

μ,nqn

〉 − m Dμ,n 〈qn〉
)
. (15)

The local kinetic temperature Tn of each ion can also be
expressed in terms of discrete dynamical variables as

Tn = 1

2mkB

∑
μ={x,y}

〈
p2

μ,n

〉
ε

(16)

where 〈 · 〉ε indicates the average over an ensemble of stochas-
tic trajectories.

IV. NUMERICAL EXPERIMENTS

We consider a chain composed of N ions and analyze the
response of the local temperature and the total heat flux to
the phase transition from a quasi-linear to the planar zigzag
spatial configuration as the transverse frequency of the trap is
lowered. We consider a chain of 24Mg+ ions, with N = 30,
and fix an axial frequency of the trap to ν = 2π × 50 kHz.
We study the dynamics for different transverse frequencies
νt = αν.

An analysis of the static properties of the ion chain in the
thermodynamic limit provides an estimate of the local value
of the critical ratio of the trap frequencies leading to the phase
transition between the linear and the zigzag configurations [9],

αc(x) =
√

7ζ (3)

2mν2

(
Q2

4πε0

)
[n(x)]3/2, (17)

where ζ is the Riemann-zeta function, and n(x) =
(3N/4L)[1 − (x/L)2] is the equilibrium linear density of ions
along the trap axis as a function of distance x from the chain’s
center and the half-length of the chain L [28]. Due to the axial
harmonic confinement the center of the chain experiences a
higher axial density and Coulomb repulsion, making the phase
transition spatially inhomogeneous.

In our numerical studies we assume that the ions are
initially at rest and arranged with random positions in the close
vicinity of the linear configuration. Then the reservoir lasers
that act on the selected ions are switched on instantaneously.
To determine the friction and the diffusion coefficients that
characterize the interaction of the 24Mg+ ions with the laser
beams, we have applied the Doppler cooling expressions (4)
to the atomic transition 3s2S1/2 −→ 3p2P1/2 with frequency
ω0 = 2π × 1069 THz [29] and an excited state natural
linewidth � = 2π × 41.296 MHz [30]. Given these values,
the interaction of a laser beam with an ion is a function of the
normalized intensity Iμ,n/I0 and the detuning δμ,n.

To drive a heat current through the chain, the ions at
opposite ends of the ion crystal are subjected to different
laser beams. In particular, we consider that the three leftmost
(rightmost) ions interact with laser beams with normalized
intensity IL = Iμ,n/I0 = 0.08 (IR = IL) and detuning δL =
δμ,n = −0.02� (δR = δμ,n = −0.1�), with n = 1,2,3 (n =
N − 2, N − 1, N ). The different detunings δL and δR lead to
effective reservoirs operating at different temperatures on both
ends of the chain, and therefore a stationary nonequilibrium
heat current. We assume that no laser beams are acting on the
inner ions, corresponding to n = 4, . . . ,N − 3.

We are principally concerned with the steady state behavior
of the system. As a criterion to determine that the system has
reached such a state we verify expression (9) for each ion, and
also apply equality (15) to the whole chain. Appendices B
and C provide details of the numerical integration and
the characteristic timescales involved in the nonequilibrium
dynamics towards the steady state. Note that in order to avoid
excessively small time steps the numerical model neglects mi-
cromotion. While this represents a significant approximation
in the zigzag configuration of an ion Coulomb crystal in a
rf-Paul trap, it should be noted, however, that micromotion is
absent in Penning traps in which analogous structural phase
transitions were recently observed and Doppler cooling can be
implemented [31].

As Fig. 2 shows, the temperature profile adopts a gradient
along the chain which progressively increases as the transverse
frequency of the trap is reduced to drive the transition from
the linear to the zigzag spatial distributions. The numerical
simulations indicate that the phase transition first emerges
for αc(0) 	 11.6. For α > αc(0) the chain is fully linear
and the temperatures Tn (n = 4, . . . ,N − 3) of the inner
ions tend to settle on a constant value for all n, which for
this system is close to the mean temperature (T1 + TN )/2
that is expected in a homogeneous harmonic chain with
nearest-neighbor interactions [32], despite the presence of the
axial quadratic potential [33]. Indeed, a spectral analysis of
the steady evolution of the coordinates of the inner ions in
linear chains indicates that their axial dynamics is close to
the Brownian motion of a simple harmonic oscillator with
characteristic frequency ν. Figure 3 illustrates that the power
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FIG. 2. (Color online) The local temperature profiles along the
ion chain vs the distance x from the chain’s center, for different ratios
of the trap frequencies α. The lines between points are drawn to guide
the eye. The insets show the corresponding steady ion distribution
obtained from a single stochastic trajectory. The color boxes indicate
the ions that are connected to the laser beams.

spectra of these ions are dominated by a well defined single
peak corresponding to the axial trap frequency. Also an ordered
series of much less intense peaks corresponding to higher order
multiples of ν can be distinguished. The much lower intensity
of the transverse spectrum evidences the minor role of this
mode, due to the strong trap confinement in the transverse
direction.

The simple axial spectrum observed in the linear chains
corroborates the expectation that a harmonic approximation to
the system Hamiltonian is valid; the system is effectively in-
tegrable, and the heat carriers are freely propagating phonons.
The lack of temperature gradient is characteristic of this
ballistic behavior.
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FIG. 3. Power spectra of the axial and the transverse motions for
the central ion in a linear chain (α = 13) and in a chain with zig-zag
spatial distribution (α = 7), see Fig. 2. See Appendix D for more
details on the power spectra.

This situation is expected to change when the chain
approaches the structural phase transition at αc(0) where the
chain buckles with the growth of the zigzag soft mode. Near
this point nonlinearities as well as mode coupling between
axial and radial modes play an increasing role and the harmonic
chain description is expected to fail. While the nonlinearities
lead to scattering, the axial-radial mode coupling leads to an
effective dynamics akin to dephasing noise. Both effects, if
significant, are known to contribute to the formation of a
temperature gradient in the chain. It should be noted that
nonlinearities tend to be relatively small unless the chain is
very close to the phase transition point [34]. Hence we expect
coupling between radial and axial modes to dominate. The
deviations from the harmonic picture are also witnessed by
the power spectra of the axial motion of the ions in the zigzag
configuration, which exhibit continuous distributions of peaks
that were not present in the linear chains; see Fig. 3. This
emerging broadband nature of the spectra can be assigned to
the axial-transverse mode coupling, which already occurs in
the absence of the laser reservoirs; see Appendix D.

As the harmonic chain description ceases to be valid, the
heat transport through the chain is modified, as evidenced by
the emergence of a temperature gradient, signaling that an
effective anomalous size-dependent heat conductivity could
be formally introduced.

In addition to the emergence of Fourier’s law when
approaching the structural phase transition, one may also
observe clear signatures of the structural phase transition in
the heat flux across the chain, as shown in Fig. 4. Initially,
on approaching the structural phase transition from the linear
chain, one observes a progressive increase of the heat flux.
This has two origins. Firstly, in the proximity of the transition
the transverse modes will start to contribute to transport.
Secondly, the increased thermal motion of the ions as the
chain softens upon approach of the phase transition lead to an
increased level of fluctuations. This noise may assist transport
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FIG. 4. Total heat flux in the axial direction as a function of
the trap frequency ratio α. The error bars provide a measure of the
fluctuations around the steady-state ensemble-average, and have been
obtained according to (average)±(standard deviation). The maximum
heat transport is achieved in the high-symmetry (linear) phase in the
proximity of the critical point, with α ≈ 13.
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as it overcomes the effects of spatial inhomogeneity in the
chain [35]. Upon further decrease of α the chain buckles,
leading to two possible heat conduction paths, while the
inter-ion distances increase which in turn leads to a reduction
in the interaction between neighboring ions and therefore a
reduction of the heat flux. While initially, close to the phase
transition, the increase in distance is compensated for by the
formation of two independent channels, deeper in the zigzag
configuration this is not the case anymore and the heat flux
reduces.

Before closing we point out that a thermal conductance
could be estimated from the temperature gradient and the
axial heat flux measured in a nonequilibrium steady state.
The spatial constraints imposed by the finite size and low-
dimensionality of trapped-ion chains prompt the analysis
of the thermal conductance as a function of the length,
instead of a size-independent thermal conductivity of in-
terest in a macroscopic model of thermal conduction. An
alternative approach to obtain the heat conductance of a
specific ion chain could be based on Green-Kubo type
linear response expressions valid for the heat current in
finite low-dimensional systems coupled to heat reservoirs
[21,36].

V. CONCLUSIONS

Our analysis based on the local temperature profile and the
total heat flux indicates that trapped-ion chains exhibit anoma-
lous heat transport. The linearly distributed ions resemble
harmonic chains, and therefore an integrable system, in which
the free energy transport along the chain by noninteracting
axial modes precludes the establishment of a temperature
gradient and would lead to a divergent thermal conductivity.
The phase transition from the linear to the bidimensional
zigzag configuration induces a coupling between axial and
transverse modes that hinders the transport of energy along the
chain, and allows the emergence of a central domain in which
a temperature gradient can be set up. Such domain grows
as the transverse frequency is lowered and the bidimensional
configuration extends towards the ends of the chain, resulting
in a significant decrease of the axial heat flux. Heat transport
is optimal in the linear configuration in the proximity of the
critical point.

Note added: After the completion of this work, we learned
about Ref. [37] devoted to the study of quantum heat
conduction in harmonic ion chains. Some of their results,
from the analysis of heat transport as a function of the
crystal structure and a numerically introduced measure of
disorder, are in good correspondence with our discussion about
the relevance of nonlinearities and the axial-transverse mode
coupling effects in the proximity of the linear-to-zigzag phase
transition. In particular, the linear temperature profile and
the remarkable insulating behavior observed in the artificially
disordered two-dimensional harmonic configuration naturally
arise from our intrinsic nonlinear approach that fully takes
into account the many-body Coulomb interaction. Also, both
models show the lack of temperature gradient that evidences
the breakdown of the Fourier’s law in the quasiharmonic linear
chains.
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APPENDIX A: DIMENSIONLESS VARIABLES

To define the dimensionless variables we start by introduc-
ing a characteristic system length �, given by the relation

�3 = 1

mν2

(
Q2

4πε0

)
. (A1)

Defining the dimensionless ion coordinate and momentum
vectors as

q̃n = (q̃x,n, q̃y,n) =
(

qx,n

�
,
qy,n

�

)
(A2)

and

p̃n = (p̃x,n, p̃y,n) =
(

px,n

�mν
,

py,n

�mν

)
, (A3)

and the one-parameter dimensionless interaction potential

Ṽ = V
�2mν2

= 1

2

N∑
n=1

(
q̃2

x,n + α2 q̃2
y,n

)

+ 1

2

N∑
n=1

N∑
l �=n

1

|q̃n − q̃l| , (A4)

where α = νt/ν is the aspect ratio of the trap frequencies, the
equations of motions (3) take the form

dq̃μ,n = p̃μ,n dt̃,

dp̃μ,n = −
(

∂Ṽ
∂q̃μ,n

+ η̃μ,n p̃μ,n

)
dt̃ +

√
2 D̃μ,n dW̃n, (A5)

with the dimensionless time

t̃ = νt, (A6)

the Wiener processes

dW̃μ,n = √
ν dWμ,n, (A7)

the friction coefficients

η̃μ,n = ημ,n

mν
, (A8)

and the diffusion coefficients

D̃μ,n = Dμ,n

�2m2ν3
. (A9)

In terms of the dimensionless variables, the total heat flux
(14) is expressed as

J̃ = J
�3mν3

=
N∑

n=1

h̃np̃n +
N−1∑
n=1

n∑
l=1

(q̃n+1 − q̃l) j̃n+1,l , (A10)
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with the dimensionless local energy densities and currents

h̃n = hn

�2mν2
(A11)

and

j̃l,n = jl,n

�2mν3
, (A12)

respectively. The dimensionless local temperatures are given
by

T̃n =
(

kB

�2mν2

)
Tn = 1

2

∑
μ={x,y}

〈
p̃2

μ,n

〉
ε
. (A13)

In the next section we will continue the analysis in terms of
the dimensionless variables. We will remove the tilde symbol
from all the variables and parameters to simplify the notation.

APPENDIX B: THE NUMERICAL INTEGRATION

The 4N -dimensional stochastic differential equations (A5)
can be expressed in a compact form as

dY = A(Y) dt + B · d�t , (B1)

where the components of the variable vector Y have been
ordered in the form

Y = (qx,1, . . . ,qx,N ,qy,1, . . . ,qy,N ,px,1, . . . px,N ,py,1,

. . . ,py,N ). (B2)

The components of the vector A containing the deterministic
terms in the equations of motion are

Ai =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

px,i , i = 1, . . . ,N,

py,i−N, i = N + 1, . . . ,2N,

−
(

∂V
∂qx,i−2N

+ ηx,i−2N px,i−2N

)
, i = 2N + 1, . . . ,3N,

−
(

∂V
∂qy,i−3N

+ ηy,i−3N py,i−3N

)
, i = 3N + 1, . . . ,4N.

The matrix B contains the diffusion coefficients Dμ,n. In our
model it can be expressed by a diagonal matrix with the
elements

Bii =

⎧⎪⎪⎨
⎪⎪⎩

0, i = 1, . . . ,N,

0, i = N + 1, . . . ,2N,√
2 Dx,i−2N, i = 2N + 1, . . . ,3N,√
2 Dy,i−3N, i = 3N + 1, . . . ,4N.

(B3)

The vector d�t denotes the 4N -dimensional Wiener process,
whose elements are

dt,i =
⎧⎨
⎩

0, i = 1, . . . ,2N,

dWi−2N, i = 2N + 1, . . . ,3N,

dWi−3N, i = 3N + 1, . . . ,4N.

(B4)

To integrate the stochastic differential equations (B1) we
consider the multidimensional explicit order 2.0 weak scheme
proposed by Platen [38]. Since in our model the matrix B
does not depend explicitly on the variable Y, such a scheme is
particularly simple. Given the variable YI at a time step I , its
value at the following time step I + 1 is given by

YI+1 = YI + 1

2
[A(�I ) + A(YI )]�t + B · ��I (B5)

where

�I = YI + A(YI )�t + B · ��I , (B6)

�t = tI+1 − tI is the constant time interval between two
consecutive time steps, and �I is the vector with elements

�I,i =
⎧⎨
⎩

0, i = 1, . . . ,2N,√
�t GI,x,i−2N, i = 2N + 1, . . . ,3N,√
�t GI,y,i−3N, i = 3N + 1, . . . ,4N,

(B7)

with GI,μ,n ∼ N (0; 1) (standard Gaussian) a normally dis-
tributed random variable selected at time step I for the n ion,
along the μ direction.

In order to get stable local temperatures and a total heat flux
from the solutions of Eqs. (B1), numerical simulations were
performed considering time intervals �t < 1 × 10−4, and
integrated up to a final time in which the steady conditions (9)
and (15) were satisfied. The process became computationally
expensive as the multiple interaction potential (A4) had to be
evaluated more than 4 × 107 times for each stochastic, and
averages that included over 500 of these trajectories were
considered. It took over two months to carry out the simulations
and get stable results using a 32 CPU machine with AMD
OpteronTM Processors 6134. The high cost of the classical
simulations provides a further argument in support of the ion
trap set up as an excellent (quantum) simulator for the analysis
of energy transport in finite low-dimensional systems.

APPENDIX C: CHARACTERISTIC TIMESCALES IN
THE NONEQUILIBRIUM DYNAMICS TOWARDS

THE STEADY STATE

In the main text we present results obtained in terms of
dynamical variables collected from long enough simulations
for the system to reach a nonequilibrium steady state. In
this section we indicate the characteristic timescales that
are needed to achieve such a state, with associated time-
independent local temperatures and heat fluxes. Figures 5
and 6 show some representative time evolutions of the local
temperatures and the total heat fluxes towards the steady state
configuration, obtained from an average over more than 800
stochastic trajectories. The ions at both ends of the chain that
are directly connected to the laser beams reach steady values
faster than the inner ions. The slowest convergence occurs
for the central ions of the linear chain. In general, it can be
assumed that the system stabilizes after approximately 5–10
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FIG. 5. (Color online) Time evolution of the local temperatures
of the leftmost ion (n = 1, upper panel) and the central ion (n =
15, lower panel) for chains with different ratios of the trap frequencies.

ms. To ensure accurate temperature profiles and heat fluxes,
the simulations have been performed up to 13 ms, and the
final results have been obtained from a time average within the
interval [10,13] ms.

Hence we are considering short-time-scale experiments in
which effects such the motional heating of the trapped ions
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FIG. 6. (Color online) Time evolution of the total heat flux in the
axial direction, obtained from Eq. (15) as the energy flow between the
ions at the ends of the chain and the corresponding laser reservoirs.

confined in rf traps due to fluctuating electric fields from the
trap electrodes should not be relevant.

APPENDIX D: POWER SPECTRA OF THE TRAPPED IONS

To get an insight into the dynamics of a given n ion in the
chain, we have considered the power spectra obtained from
the steady evolution of the axial (qx,n) and transverse (qy,n)
coordinates, given by

Iμ,n(ν) = 1

τ

〈 ∣∣∣∣
∫ ts+τ

ts

dt eiνt qμ,n(t)

∣∣∣∣
2 〉

ε

, (D1)

where ts is an arbitrary time value at the steady region and τ

a long enough time interval. 〈·〉ε denotes the average over an
ensemble of stochastic trajectories. Experimentally, it can be
measured using, e.g., the Ramsey scheme [39].

The appearance of the power spectra presented in the main
text is conditioned by the interaction of the ion chain with
the laser reservoirs. The identification of the spectral features
associated with such interaction allows a more accurate
analysis of the dynamics.

As Fig. 7 shows, the heat reservoirs cause a slight
broadening of the distinct peaks associated with the trapping
frequencies, whereas they do not introduce significant changes
in the remaining spectral pattern. Therefore, the emergence
of a continuous distribution of peaks in the proximity of the
structural phase transition is intrinsic to the dynamics of the
isolated chain of trapped ions.
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FIG. 7. (Color online) The power spectra of Fig. 3 in the main
text (solid line) and the power spectra corresponding to the free
evolving chain of trapped ions, after disconnecting the laser beams at
time t = ts (red dashed line).
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