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Three-qubit refrigerator with two-body interactions
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We propose a three-qubit setup for the implementation of a variety of quantum thermal machines where all
heat fluxes and work production can be controlled. An important configuration that can be designed is that of
an absorption refrigerator, extracting heat from the coldest reservoir without the need of external work supply.
Remarkably, we achieve this regime by using only two-body interactions instead of the widely employed three-
body interactions. This configuration could be more easily realized in current experimental setups. We model
the open-system dynamics with both a global and a local master equation thermodynamic-consistent approach.
Finally, we show how this model can be employed as a heat valve, in which by varying the local field of one of
the two qubits allows one to control and amplify the heat current between the other qubits.
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I. INTRODUCTION

Quantum thermodynamics studies the emergence of ther-
modynamic behavior in systems that are quantum in nature
[1–3]. One of the main aims of thermodynamics is the de-
sign and realization of thermal machines, devices relying on
thermodynamic processes to achieve some desired objective.
Besides, the advances in controlling quantum systems has
allowed to characterize thermal machines in the quantum
domain [1,3–6]. Quantum absorption machines have recently
sparked a wide interest since they can perform the desired
task without the input of any external source of work. These
machines use heat to power themselves and therefore require
at least three different thermal reservoirs. The main focus
of research into absorption machines has been in coming up
with quantum absorption refrigerators [7–36], which remove
energy from a cold reservoir and dump it into a hot reservoir
using a third, hotter work reservoir.

In the seminal work of Linden and coworkers [8], an
absorption refrigerator was proposed which employs three
qubits as a working substance, each connected to a thermal
reservoir at different temperatures. In this model, the three
qubits interact via a three-body coupling. An experimental
realization of a similar model with trapped ions exploiting
three-body interactions has been reported in [34].

For continuous-variable systems, e.g., quantum oscillators,
it has been rigorously proven by Martinez and Paz that an
autonomous absorption refrigerator cannot exist with only
time-independent quadratic Hamiltonians and that some form
of nonlinearity would be required [37]. For discrete quan-
tum systems, the minimum requirements on the form of the
Hamiltonian are not known and the necessity of three-body
interactions remains an open problem in general.

The authors of Ref. [8], well aware of this issue, described
a modified model involving one qubit and one qutrit with
a suitably engineered interaction that do not require three-
body interactions. To the best of our knowledge, however, the

question whether an absorption refrigerator, i.e., not requiring
work, could be designed with three qubits interacting with
two-body spin-spin couplings has not been settled. This is
the objective of this work: We demonstrate that simple two-
spin exchange interactions among three qubits connected to
three thermal reservoirs are enough to refrigerate the coldest
reservoir without the expense of any external work.

Any investigation of the thermodynamic properties will
inevitably lead to considering systems that have some connec-
tions to external environments. The exchange of energy be-
tween the system and the environments can be described using
the theory of open quantum systems [38]. There are several
methods to model the system-environment couplings, which
are in turn dependent on the physical situation under con-
sideration. In particular, the Gorini-Kossakowski-Lindblad-
Sudarshan (GKLS) master equation describes the time evolu-
tion of a system that is weakly connected to a Markovian envi-
ronment [39,40]. The main ingredients in the GKLS equation
are the jump operators, which describe the transitions assisted
by the thermal environments. The specific jump operators in
each case depend on the physical model for the couplings and
the environments.

When the couplings between the system and the environ-
ments result from repeated short interactions, as for example
in collisional models, the jump operators are related only
to the subsystem directly in contact with each thermal bath
[33,41–62]. In this case the derivation of the GKLS master
equation is frequently termed as the local (or boundary-
driven) approach. The external work required to switch on and
off the system bath interaction guarantees the thermodynamic
consistency of the model [46,47,63,64]. A different situation
occurs when considering harmonic baths permanently cou-
pled to the system. Assuming in addition that the system
inner time scales are smaller than the characteristic time of
the relaxation induced by the thermal baths, the secular (or
rotating wave) approximation applies [38]. Thus, the dynam-
ics is again described by a master equation in GKLS form.
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However, now the jump operators are related in general to
the entire system. The corresponding derivation of the master
equation is sometimes termed as the global approach. The use
of the terms local and global could be misleading, since the
local approach may lead to a good approximation to the exact
dynamics for systems coupled to harmonic baths in certain
parameter regimes for which the secular approximation fails
[65,66]. However, for time-independent models thermody-
namic consistency may not be ensured [64,67]. Remarkably,
for time-dependent setups a detailed thermodynamic analysis
may overcome this limitation [46,47,63].

Within this work we will study a system of three qubits
whose couplings with the environment can be described either
by the repeated interaction model (local master equation) or
by the harmonic model (global master equation). We will
show that the differences between the corresponding master
equations will lead to distinct behavior in the thermodynamic
functioning of the system. We will perform an exhaustive
exploration of the parameter space to characterize all the
possible operating regimes of the system. We demonstrate that
in both models an absorption refrigerator mode can be found
without the need of three-body interactions.

The paper is organized as follows: In Sec. II we introduce
the three-qubit model with two-body internal couplings. We
also briefly describe the derivation of the corresponding mas-
ter equation when considering either a continuous coupling
to harmonic baths or a repeated interaction model. Particular
attention is paid to the definition of the heat currents and the
thermodynamic consistency of each description. In Sec. III
we explore the possible operating modes of the system in
each case, with special attention to absorption refrigerators.
In Sec. IV we analyze the limitations of the three-qubit model
when working as a heat valve. Finally, we summarize our
findings in Sec. V. In the Appendix we explore the quantum
correlations between the different components of the device.

II. THREE-QUBIT DEVICE

We consider three qubits that are coupled to each other via
an XXZ Hamiltonian:

ĤS = ĤI +
3∑

i=1

ĤLi , (1)

ĤLi = h̄Bi σ̂
i
z , (2)

ĤI =
∑
i, j

j > i

h̄Ji j
(
σ̂ i

x σ̂ j
x + σ̂ i

yσ̂
j

y

) + h̄�i j σ̂
i
z σ̂ j

z , (3)

where σ̂ i
x,y,z are the Pauli spin operators, Bi, Ji j , and �i j are

the values of the local magnetic field, the qubit coupling
strength, and the interaction anisotropy, respectively. Without
loss of generality we assume them to be positive coefficients.
Besides, it can be easily shown that the total magnetization
σ̂z ≡ σ̂ 1

z + σ̂ 2
z + σ̂ 3

z is a conserved quantity with respect to the
system Hamiltonian

[ĤS, σ̂z] = 0. (4)
In the following subsections we describe two microscopic

models for the interaction of the system with the environment.
Although the XXZ model is quite common in the literature,
it is not the most general form of two-qubit interaction.
Nevertheless, as we show in the following, this Hamiltonian
leads to a significant level of control in the functioning of the
system as a thermal device.

A. Harmonic-bath model

In the harmonic-bath model, the quantum system is perma-
nently connected to thermal baths. We consider three bosonic
reservoirs R1, R2, and R3 at temperatures T1, T2, and T3 > T2 >

T1. Each qubit i is attached to the bath Ri with a well-defined
temperature Ti. The free environments Hamiltonians read

ĤRi =
∑

μ

h̄ ωμ,i b̂†
μ,i b̂μ,i, (i = 1, 2, 3), (5)

being b̂†
μ,i and b̂μ,i the creation and annihilation operators

corresponding to the mode with frequency ωμ,i. Besides, the
interaction between the system and each reservoir is described
by:

ĤSRi = σ̂ i
x ⊗ R̂i, (6)

with

R̂i = h̄
√

ai

∑
μ

√
ωμ,i (b̂μ,i + b̂†

μ,i ), (7)

where ai is a qubit-bath coupling strength.
In the limit of very weak coupling with the thermal reser-

voirs the reduced dynamics of the system is given by the
following master equation [38]:

d ρ̂S

dt
= − i

h̄
[ĤS, ρ̂S] +

3∑
i=1

Li{ρ̂S}, (8)

where ρ̂S is the system density matrix. The dissipation super-
operators Li{ρ̂S} are in the GKLS form

Li[ρ̂S (t )] =
∑
ω>0

γi
(
1 + ni

ω

)[
Âi

ω ρ̂S (t )Âi†

ω − 1

2
Âi†

ω Âi
ω ρ̂S (t ) − 1

2
ρ̂S (t )Âi†

ω Âi
ω

]

+ γi ni
ω

[
Âi†

ω ρ̂S (t )Âi
ω − 1

2
Âi

ωÂi†

ω ρ̂S (t ) − 1

2
ρ̂S (t )Âi

ωÂi†

ω

]
, (9)

with

ni
ω = 1

exp(h̄ω/kBTi ) − 1
(10)

the average thermal occupation of Ri and kB the Boltz-
mann constant. The constant γi describes the strength of the
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interaction between the system and Ri. Therefore, γi defines
the lowest frequency scale in the model. The global jump
operators Âi

ω are obtained by using

eiĤSt/h̄σ̂ i
x e−iĤSt/h̄ =

∑
ω

Âi
ωe−iωt . (11)

Finally, the heat current Q̇i(t ) from the bath Ri into the
system is given by [38]

Q̇i(t ) = Tr{ĤSLi[ρ̂S (t )]}. (12)

In the steady state, Q̇i(t → ∞) ≡ Q̇i, the first and second laws
of thermodynamics are expressed as

3∑
i=1

Q̇i = 0, (13)

Ṡ = −
3∑

i=1

Q̇i

Ti
� 0, (14)

where Ṡ is the total stationary entropy production. These
relations stem directly from both the structure of the master
Eq. (8) and the definition of the heat currents Eq. (12) [68,69].

B. Repeated interaction model

We consider now a model based on repeated interactions
between each qubit i and a reservoir Ri consisting of a stream
of auxiliary qubits described by the local Hamiltonian:

ĤRi = h̄Bi τ̂
i
z , (15)

initially in equilibrium at temperature Ti, i.e., in the state
exp(−ĤRi/kBTi )/Zi where Zi = Tr exp(−ĤRi/kBTi ). Again,
we assume T1 < T2 < T3. The operators τ̂ i

x,y,z are the corre-
sponding Pauli operator for the auxiliary qubits. The interac-
tion between the system and each particle of the reservoir lasts
for a short time τ and is described by the Hamiltonian

ĤSRi = h̄ gi√
τ

(σ̂ i
− ⊗ τ̂ i

+ + σ̂ i
+ ⊗ τ̂ i

−), (16)

where σ̂ i
± (τ̂ i

±) are the raising and lowering operators for the
system (auxiliary) qubit i.

The model has been treated extensively in other publica-
tions [33,41–62] and here we only give a summary of the
results. In the limit of weak coupling giτ � 1 and taking
τ → 0, the reduced dynamics of the system is described by
the so-called local master equation:

d ρ̂S

dt
= − i

h̄
[ĤS, ρ̂S] +

3∑
i

Di[ρ̂S], (17)

with Di being the dissipator for the bath Ri

Di[ρ̂S] = γi
(
ni

2Bi + 1
) (

σ̂ i
−ρ̂Sσ̂

i
+ − 1

2
σ̂ i

+σ̂ i
−ρ̂S − 1

2
ρ̂Sσ̂

i
+σ̂ i

−

)

+ γi ni
2Bi

(
σ̂ i

+ρ̂σ̂ i
− − 1

2
σ̂ i

−σ̂ i
+ρ̂S − 1

2
ρ̂Sσ̂

i
−σ̂ i

+

)
.

(18)

The parameter γi = g2
i is the rate resulting from the micro-

scopic derivation of the local master equation using the re-
peated interaction model (see, for example, Ref. [63]). Unlike

in the harmonic-bath model, the value of this constant is not
necessarily smaller than the system inner frequencies.

As for Sec. II A, we are interested in the behavior of the
system at steady state. From the numerical expression of
this stationary state ρ̂S (t → ∞), we can readily calculate the
corresponding heat current flowing from each reservoir via

Q̇i = Tr{ĤLiDi[ρ̂S (t → ∞)]}. (19)

The thermodynamic consistency of the model can only be
ensured if one takes into account the extra work cost asso-
ciated with the time dependence of the system-auxiliary qubit
interaction as shown in Refs. [46,47,63]. We emphasise that
this work is produced/paid by the agent or field (e.g., electric
or magnetic) that is generating the interaction between the
system and the auxiliary qubit during their collision. The
expression for the work power at steady state reads

Ẇ = Tr

{
ĤI

3∑
i

Di[ρ̂S (t → ∞)]

}
= −

3∑
i

Q̇i. (20)

From the last equality it is evident that the first law, for
the system at steady state, is automatically verified. We are
assuming the convention that negative work corresponds to
work extracted/produced. The second law for this model is
expressed as Eq. (14). Using Eqs. (2), (4), and (19), an
additional relation for the currents in this model is found,

3∑
i=1

Q̇i

Bi
= 0. (21)

III. OPERATING REGIMES

Having defined the thermodynamic quantities of the sys-
tem we can characterise the corresponding operating regimes
via the sign of Q̇i and Ẇ . Note that the relation Ẇ ≡ 0 always
holds in the harmonic-bath model. For various parameters
of the three-qubit system Hamiltonian, in a {Q̇1/Q̇3, Q̇2/Q̇3}
diagram, these regimes are limited by the boundaries

Q̇1 = 0, Q̇2 = 0, (22)

the line Ẇ = 0 given by

Q̇2

Q̇3
= Q̇1

Q̇3
− 1, (23)

and the line where the entropy production Eq. (14) is zero,

Q̇2

Q̇3
= T2Q̇1

T1Q̇3
− T2

T3
. (24)

The possible operating regimes are summarized in Table I
depending on the signs of Q̇i and Ẇ . As we will see, all
ten modes can be realized in the repeated interaction model.
For the harmonic-bath model, since Ẇ = 0, only four modes,
indicated with an asterisk in Table I, are possible. We have
classified the operating regimes into two main categories: the
refrigerators related to an extraction of energy from R1 and
the heaters that lead to an injection of energy into R1. In
particular, regime IV corresponds to absorption refrigerators.
Such functioning allows for the cooling of the cold bath
without the input of external work. This cooling mode is
driven by the heat coming from R3.
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TABLE I. Table of the different operating regimes of the three-qubit machine. The first column shows the labels used in the text and the
in subsequent plots; the second column describes the operating regime by taking as a reference the currents exchanged with R1 while the third
column further describes the operation of the setup as a thermal machine (notice that this might not be unique); the remaining columns show
the signs of the heat currents and of the external work power. The asterisk indicates the operating regimes accessible in the harmonic-baths
model with the requirement Ẇ = 0. All operating regimes can be realized in the repeated interactions model.

Label Operating regime Description Q̇1 Q̇2 Q̇3 Ẇ

I T1-Refrigerator Dual-sink power-driven refrigerator >0 <0 <0 >0
II T1-Refrigerator Dual-source power-driven refrigerator >0 >0 <0 >0
III T1-Refrigerator Power- and heat-driven refrigerator >0 <0 >0 >0
IV T1-Refrigerator∗ Absorption refrigerator >0 <0 >0 � 0
V T1-Heater T2-power-driven refrigerator <0 >0 <0 >0
VI T1-Heater∗ T2-heat-driven refrigerator with work production <0 >0 <0 � 0
VII T1-Heater Dual-source accelerator <0 >0 >0 >0
VIII T1-Heater∗ Dual-source engine <0 >0 >0 � 0
IX T1-Heater Dual-sink accelerator <0 <0 >0 >0
X T1-Heater∗ Dual-sink thermal engine <0 <0 >0 �0

For an absorption refrigerator, the performance can be
assessed by the amount of heat extracted from R1 compared
to that inputted from R3. This means that, in absence of
work extracted, the coefficient of performance (COP) for the
machine is the ratio COP = Q̇1/Q̇3. We see that the maximum
possible value of Q̇1/Q̇3 is found where the lines Ṡ = 0 and
Ẇ = 0 intersect, corresponding to the maximum COP,

COPmax = T1(T3 − T2)

T3(T2 − T1)
, (25)

which only depends on the temperature ratios. To assess the
viability of an absorption refrigerator considering the different
environment models, we begin with a random search of the
parameters space.

A. Harmonic-bath model

When considering the harmonic-bath model, there exist
four possible operating regimes for the three-qubit machine.
Namely, the device can act either as an absorption refrigerator
IV or as a heater. There are three different regimes corre-
sponding to the heater category VI, VIII, and X. In Table I
we show the sign of the currents Q̇i corresponding to each one
of these regimes of operation. In Fig. 1 we show the different
regimes of three-qubit machine obtained with random local
magnetic fields Bi sampled with uniform distribution in the
interval [0,1]. Values of Bi of the order of γ were discarded.
The consistency with the first law is reflected in the fact that
all the regimes of operation lie on the line defined by Eq. (23).
These results indicate that the most likely operations are either
VIII or X. However, the absorption refrigerators and the heater
VI are found for more specific parameter regimes. Concretely,
the results corresponding to absorption refrigerators are very
close to the origin. Thus, the corresponding performance turns
out to be very small. This cooling operation can be understood
as the interplay between two main mechanisms. One of them
is associated with the unavoidable heat leaks from the baths
R3 and R2 into R1. The other is related to three-bath processes
that make it possible to cool down R1. The currents associated
with both mechanisms are proportional to transition frequen-
cies between the eigenstates of ĤS . Therefore, the cooling

mechanism only overcomes heat leaks for very specific val-
ues of the parameters, typically for small internal couplings
(Ji j/Bi,�i j/Bi � 1) while bath temperatures should be of
comparable magnitude. Under these conditions the heat leaks
are minimized at the expense of small internal couplings and,
as a consequence, small currents. For this reason two-body
interactions are less convenient to obtain large currents and
performance than three-body couplings [8]. In the latter case,
the currents associated with the heat leaks are proportional
to the coupling strength between qubits [70]. As a result,
the cooling operation is found for a larger set of parameters,
occurring in addition with larger currents and performance.
When the internal couplings are of the order of the qubit
frequencies, heat leaks will dominate in both models and
cooling conditions cannot be found.

FIG. 1. Scatter plots of the heat ratios Q̇1
Q̇3

and Q̇2
Q̇3

for 50 000
random parameter choices of the local magnetic fields Bi in the
interval (0,1). The red, blue, orange, and khaki dots corresponds
to the operating regimes IV, VI, VIII, and X. Equations (22),
(23), and (24) are represented by using dotted lines. The other
parameters are γ1 = 8.71×10−7, γ2 = 5.76×10−7, γ3 = 7.56×10−7,
�12 = 7.93×10−4, �13 = 9.67×10−4, �23 = 1.69×10−4, J12 =
5.49×10−4, J13 = 2.960×10−4, J23 = 4.963×10−4, T1 = 1, T2 = 2,
T3 = 3.
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FIG. 2. Main panel: A scatter plot of the heat ratios Q̇1/Q̇3 and
Q̇2/Q̇3 for 50 000 random parameter choices of the local magnetic
fields Bi and dissipation rates γi. The purple, pink, light blue, red,
grey, blue, yellow, orange, green, and khakidots correspond, respec-
tively, to the operating regimes I, II, III, IV, V, VI, VII, VIII, IX, and
X. The lines correspond to Eqs. (22), (23), and (24). The other pa-
rameters are J12 = 9.81×10−1, J13 = 7.75×10−1, J23 = 7.57×10−1,
�12 = 1.24×10−1, �13 = 2.56×10−1, �23 = 6.11×10−1. In the in-
set we show the same diagram but restricted to the absorption
refrigerators.

B. Repeated interaction model

The repeated interaction model should include the work
cost associated with the microscopic collisions to ensure
thermodynamic consistency. This additional energy current
is responsible for the emergence of ten different regimes of
operation. We begin by fixing Ji, j,�i, j to some randomly
chosen values in the range [0,1]; we observe that the results
do not qualitatively depend on this initial choice. We fix the
temperatures with T1 = 1 , T2 = 2 , T3 = 3. A large set of
the remaining parameters {Bi, γi} are then randomly generated
with the restriction 0 � Bi � 5 and 0 � γi � 1. The resulting
steady states and currents are calculated.

The heat current ratios Q̇1/Q̇3 and Q̇2/Q̇3 are presented
in the scatter plot of Fig. 2. We see that there is a far
richer selection of possible operating regimes compared to the
harmonic-bath model. They are summarized in the Table I.

We note the top right quadrant is completely empty, this is
due to the fact that having both Q̇1/Q̇3 and Q̇2/Q̇3 positive
indicates that all heat currents flow in the same direction.
This is, however, not possible because of the conservation of
magnetization of the system: As a consequence of Eq. (21),
these currents cannot have all the same sign.

Focusing on our intended target of designing an absorption
refrigerator we note that the requirements {Q̇1 > 0, Q̇2 < 0,

Q̇3 > 0,Ẇ � 0} are fulfilled within the small triangle in the
bottom right quadrant of Fig. 2. This area is constrained by
Ṡ = 0, Ẇ = 0, and Q̇1/Q̇3 = 0 (label IV) and highlighted
in the inset of Fig. 2. All the points above the line Ẇ = 0
correspond to negative work power, i.e., besides refrigeration
of R1 there is some extra work produced. In this case the COP
defined above is smaller than the maximum value. Therefore,
a fairer definition of COP in this case might be

COPW = Q̇1

Q̇3 + Ẇ
. (26)

As we have shown in this section, it is possible to construct
an absorption refrigerator with three qubits and two-body
interactions also when the total system is described by the
local master equation. In the next section, we will elucidate
how such three-qubit machines can be understood as coupled
two-reservoir machines.

1. Decomposition in two-reservoir devices

In this section we show how the three-qubit machine in the
context of the repeated collision model can be decomposed
into three coupled two-reservoir devices. Then, we will an-
alyze the absorption refrigerator as a composite machine, in
which one of the devices operates as an engine between the
work reservoir at T3 and the hot reservoir at T2, whereas a
second device operates as a refrigerator between the hot and
cold (T1) reservoirs. The work produced from the engine is
used to power the refrigerator. This insight allows us to restrict
considerably the choice of magnetic fields necessary to design
one of the operating regimes described in the previous section.

The internal functioning of the three-qubit setup can be
further clarified calculating the magnetic current moving
throughout the system [71]:

d
〈
σ i

z

〉
dt

= q̇i +
∑
j 	=i

Cj,i, i = 1, 2, 3, (27)

where Cj,i = 2Jji〈σ j
x σ i

y − σ i
xσ

j
y 〉 = −Ci, j is the magnetic cur-

rent from qubit j to i and q̇i = γi(1 + 2n̄i )(〈σz〉bi − 〈σz〉i ) is
the magnetic current between qubit i and its corresponding
bath. Summing Eq. (27) over i = 1, 2, 3 we obtain

∑
i=1,2,3

d
〈
σ i

z

〉
dt

=
∑

i=1,2,3

q̇i, (28)

implying that the variation of the total magnetization of the
system is given by the magnetic flux from the three reser-
voirs. Furthermore, when the system is in a steady state,∑

i d〈σ i
z 〉/dt = 0, we obtain the relation∑

i=1,2,3

q̇i = 0. (29)

This condition is equivalent to Eq. (21) since the heat currents
are proportional to the magnetic currents,

Q̇i = Biq̇i. (30)

In the case in which all the magnetic fields are equal: Bi = B,
the condition

∑
i q̇i = 0 implies

∑
i Q̇i = 0 which means that

the external work power Ẇ is zero (see Eq. (20) and Ref. [63]).
This correspondence between the balance of magnetic cur-
rents and that of heat currents does not hold in the case of
unequal fields.

The continuity Eq. (27) allows us to see how the three-qubit
system can be thought of as three two-reservoir devices. A
schematic view of this construction is shown in Fig. 3. Each
pair of qubits has an associated magnetic current Ci, j with a
specific sign. This magnetization current is associated with
a corresponding energy current but due to the difference in
the local magnetic fields that the two qubits may have, the
energy currents that flow out of one qubit and into another
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FIG. 3. Schematic representation of the three-qubit absorption
refrigerator decomposed as the sum of three two-reservoir devices
depicted as triangles. We show a particular case corresponding to the
absorption refrigerator mode IV for which the pairs (2,3) and (1,3)
act as engines, while (1,2) operates as a refrigerator.

are not equal BiCi, j 	= −BjCj,i. From its definition, Cj,i can be
interpreted as the rate of excitations exchange between the two
qubits. When the local magnetic fields are unequal, the energy
released by one qubit flipping is different from that absorbed
by the other qubit making the reverse flip. This difference
can be interpreted as a work power associated with a 2-qubit
device labeled (i, j):

Ẇi, j = (Bi − Bj )Ci, j = −Q̇i, j − Q̇ j,i. (31)

where we have defined the heat currents Q̇i, j = −BiCi, j from
qubit j to qubit i. In the Appendix, we show that large
currents Ci, j are necessarily accompanied by large quantum
correlations measured, for instance, by the quantum mutual
information.

Notice that the total work power produced by the three-
qubit system is the sum of the three contributions from the
three devices:

−Ẇ = Ẇ1,2 + Ẇ1,3 + Ẇ2,3. (32)

Each of the three two-qubit devices seems to operate simi-
larly to a system of two qubits coupled by the XXZ interaction,
subject to the local magnetic fields Bi and Bj , respectively, and
coupled to the reservoirs at temperatures Ti and Tj . Another
interesting feature is that each two-qubit device has the same
expression for the efficiency as the one corresponding to a
single Otto engine or refrigerator. Such machine would consist
of a qubit operating with the same magnetic fields Bi and Bj .
This originates from the mathematical structure of the con-
tinuity equation that implies that the ratios of heat currents
and of heat current and work power only depend on the local
magnetic fields applied to the qubits i and j. For example,
if the (i, j) device operates as a thermal engine, then its
efficiency is

ηi, j = |Ẇi, j |
Q̇ j,i

= 1 − Bi

Bj
. (33)

0.0 0.5 1.0 1.5 2.0

B1/B3

0.0

0.5

1.0

1.5

2.0

B
2
/B

3

FIG. 4. Scatter plot of the same 50 000 points as Fig. 2 as
a function of the field ratios B1/B3 and B2/B3. The black lines
correspond to the operating regimes from Eq. (37) and the thick
segments delimit the region where the absorption refrigerator (red
points) can exclusively been found.

Conversely, if it operates as a refrigerator, its coefficient of
performance is

COPi, j = |Q̇i, j |
Ẇi, j

= Bi

Bj − Bi
. (34)

Remarkably, there is an important caveat: The three devices
are not independent since they are connected to each other
as they exchange the work contributions Ẇi, j which are con-
strained by Eq. (32). Thus, even if individually they operate
similarly to Otto machines, such components may violate
the Carnot bounds for some parameters. However, the whole
system obeys the Carnot limit. Moreover, it is not possible,
based on the three magnetic fields {B1, B2, B3} and the three
temperatures {T1, T2, T3}, to predict the functioning of the
collective machine without finding the actual steady state of
the three-qubit system.

Nevertheless, this construction is useful to exclude the
region of parameters in which the three-qubit machine cannot
function. For example, if we consider the absorption refrigera-
tor again, then we notice that for this to operate it must include
internally an engine drawing heat from the warmest reservoir
T3 and producing some work which is then used to feed
a refrigerator extracting heat from the coldest reservoir T1.
In the range of parameters corresponding to Fig. 4, we have
checked numerically that the pair (2,3) act as an engine
and the pair (2,1) is a refrigerator. Besides, both satisfy the
Carnot limit. Assuming Ti < Tj , an Otto machine works as a
refrigerator for [72]

Bi

Bj
<

Ti

Tj
, (35)

as an engine for

Ti

Tj
<

Bi

Bj
< 1, (36)

and as an accelerator for Bi/Bj > 1. Then, considering
Eq. (35) for the device (2,3) and Eq. (36) for (2,1), see Fig. 3,
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lead to the following inequalities:

T2

T1

B1

B3
<

B2

B3
,

T2

T3
<

B2

B3
< 1, (37)

which delimit a trapezoid in a (B1/B3, B2/B3) diagram (see
Fig. 4). We have also checked numerically that the operating
regime corresponding to the other pair (1,3) can either be a
refrigerator or an engine. However, this does not result in an
additional restriction since such device may violate the Carnot
bound.

To verify these conditions, we plot again the same points of
Fig. 2 as a function of their magnetic ratios B1/B3 and B2/B3.
The resulting scattering plot is in Fig. 4, which includes
the straight lines corresponding to the conditions Eq. (37).
In contrast to Fig. 2, however, different operating regimes
overlap because of the collective effects in the three two-qubit
device model.

We observe that the red points, corresponding to the ab-
sorption refrigerators, are only confined to the trapezoid de-
limited by conditions Eq. (37). We note that this region is not
solely the domain of the absorption refrigerator but contains
three other regimes within it (see Table I): I, III, and X. Notice
that in both regions I and III, the three-qubit system dissipates
mechanical work rather than producing it as in the absorption
refrigerator area IV. These functionings are not incompatible
with conditions Eq. (37). In fact, because of the couplings
between devices, it may happen that the work produced by the
(2,3) device is not enough to power the refrigerator (1,2) thus
turning the setup into one of the other modes. It is important to
stress that the magnetic field conditions Eq. (37) are necessary
but not sufficient for designing an absorption refrigerator.

2. Recycling the collisional work cost

The performance of the refrigeration process can be
boosted if the extra work produced is recycled to feed a (clas-
sical or quantum) refrigerator S′ operating between T1 and
T2 and requiring external work. Let us consider the scheme
shown in Fig. 5 where S is the original three-qubit refrigerator
described by the repeated interaction model which produces
some work. Let us also assume that the second refrigerator
S′ is an Otto fridge using a single qubit working with the
magnetic field values B1 and B2. Its coefficient of performance
is B1/(B2 − B1) when operating in the adiabatic regime [73].
If we combine the quantum three-qubit machine with this Otto
refrigerator, then the whole performance will only depend on
the field ratios:

COPOtto = Q̇1 + Q̇′
1

Q̇3
= B1(B3 − B2)

B3(B1 − B2)
, (38)

corresponding to that of an Otto machine operating with three
magnetic fields in the adiabatic regime. This last equation
follows directly from Eq. (21). Interestingly, this performance
is always greater than the performance of the original system.
In Fig. 6 we illustrate this performance boosting.

FIG. 5. Scheme of composite machine recycling the work cost.
S is the original system of three qubits in the repeated interactions
model and S′ is an Otto chiller. Both systems are coupled to the same
baths Ri and operate as refrigerators, i.e., {Q̇1 > 0, Q̇2 < 0, Q̇3 > 0,

Ẇ < 0} and {Q̇′
1 > 0, Q̇′

2 < 0, −Ẇ > 0}. S′ harness the work pro-
duced by the three-qubit device to boost the performance of the
composite machine.

IV. HEAT VALVE

Recently there has been a great deal of work investigating
the possibility of building systems that can control the flow
of heat currents much like what can be done with electrical
currents. Schemes for quantum thermal transistors, which
modulate a heat current by the application of a small auxiliary
current and heat valves, which can reverse the direction of
a current have been put forward [74–77] and experimentally
realized [78].

2.2 2.3 2.4 2.5

B2/B1

0.0

0.1

0.2

0.3

0.4

0.5

C
O

P
/C

O
P

m
a
x

FIG. 6. The coefficients of performance Q̇1/Q̇3 (solid line),
Q̇1

Q̇3+Ẇ (dotted-dashed line), and
Q̇1+Q̇′

1
Q̇3

(dashed line) in units of
COPmax [see Eq. (25)] as functions of B2. We have chosen B1 = 1.31,
B3 = 3.57, γ1 = 6.45×10−1, γ2 = 7.80×10−1, γ3 = 9.34×10−1.
Besides, we only show the values of B2 such that both the original
three-qubit system and the composite device operates as absorption
refrigerators. The maximum value of B2 corresponds to Ẇ = 0. The
remaining parameters are the same as described in the caption of
Fig. 2.

012109-7



ADAM HEWGILL et al. PHYSICAL REVIEW E 101, 012109 (2020)

0 2 4 6 8 10

B2/B1

−0.5

0.0

0.5

1.0
Q̇

i/
(h̄

B
1
γ

1
)

0.0 2.5 5.0 7.5 10.0 12.5

B2/B1

−0.4

−0.2

0.0

0.2

0.4

Q̇
i/

(h̄
B

1
γ

1
)

FIG. 7. Heat currents Q̇1 (dahsed), Q̇2 (dot-dahsed), Q̇3 (solid),
and the work power Ẇ (dotted) against the value of B2 in the
harmonic-bath (top) and repeated collision (bottom) models. In the
harmonic-bath model the control over the currents is even more
limited than in the collisional model. For example, in this case
the system operates as a heater VIII for small and large values of
B2; see Table I. It operates as a heater X in the transition regime.
The set of parameters is J12 = 4.07×10−1, J13 = 3.22×10−1,

J23 = 2.43×10−1, �12 = 6.31×10−1, �13 = 7.05×10−1, �23 =
4.76×10−1, B1 = 4×10−1, B3 = 1.6, T1 = 1, T2 = 2, T3 = 3. The
bath couplings for the harmonic and repeated interactions models
are γi = 10−6 and γi = 10−6.

In addition, heat current amplification, where the magni-
tude of a current can be increased by application of a small
auxiliary current, and current stabilisation, where the currents
are unaffected by parameter changes, have been observed
[74–76,79,80].

In this section, we investigate whether our three-qubit
setup can be employed as a heat valve in which qubit 2 is used
as a control to regulate the heat current between qubits 1 and
3. In what follows we therefore assume that all the parameters
of the device are fixed except for the local magnetic field
B2 which will be used as the knob to vary Q̇1 and Q̇3. Our
results are summarized in Fig. 7. The repeated interactions
approach appears to be more flexible for the control of the
currents than the harmonic-bath model. This seems to be due
to the appearance of the external work cost as an extra energy
channel.

We observe three separate heat combinations:
(1) Q̇1 < 0, Q̇3 < 0,

(2) Q̇1 > 0, Q̇3 < 0,

(3) Q̇1 > 0, Q̇3 > 0,

with the combination Q̇1 < 0, Q̇3 > 0, i.e., heat flowing from
1 to 3, missing. This can be explained because we have chosen
a set of fields and temperatures such that: B1/T1 < B3/T3.
According to our diagram in Fig. 4, however, there are no
parameters with these assumptions giving heat flow from 1
to 3. Thus, although manipulating qubit 2 gives some control
over the heat flow between 1 and 3, full control is achieved
when the magnetic field of at least two qubits can be changed
and the whole diagram in Fig. 4 can be explored. We finally
remark that, as shown in the bottom plot of Fig. 7, the heat
valve may need external work to function.

V. CONCLUSIONS

In this paper we have demonstrated the operating modes
of a three-qubit setup as thermodynamic machines. We have
shown that it is indeed possible for the three qubits to realize
an absorption refrigerator when coupled to three reservoirs
at different temperatures. This is true when modeling the
system with both the global and local master equation, though
the global master equation is more restricted in the accessi-
ble operating regimes. Remarkably, this is achieved assum-
ing simple two-body spin-spin interactions between qubits.
Therefore, in contrast to previous designs that require three-
body interactions, the scheme we propose could be achieved
with current quantum technology setups.

Besides the absorption refrigerator regime, we have dis-
covered that the three-qubit setup allows a high degree of ver-
satility, operating as several thermodynamic devices. Indeed,
we have shown how one of the three qubits can be utilized as
a heat vale, enabling the control of the heat flow between the
other two qubits. We stress that this high degree of flexibility
requires one to control only local fields and temperatures of
the qubits.

Now that the investigation of three qubit devices has in-
creased our understanding of heat transport in small quantum
machines, the next goal is the exploration of mesoscopic
setups with many coupled qubits. One important open ques-
tion is how performance figures such as power, stability and
efficiency scale with the number of qubits in the working
substance.
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APPENDIX: QUANTUM CORRELATIONS

In this Appendix, we examine the relation between the
functioning of the three-qubit device and any quantum cor-
relations that exist among the qubits. As the flow between two
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FIG. 8. Plot of the mutual information between the qubit 1 and 3
as a function of C1,3 for all the points from Fig. 2. The black line is
the lower bound Eq. (A8).

qubits is the quantity of interest here we look at correlations
between any two qubits as measured by their quantum mutual
information:

Ii j = Si + S j − Si, j, i, j = 1, 2, 3, (A1)

where Si is the von Neumann entropy Si = −Tr[ρ̂ i log ρ̂ i]
where ρ̂ i is the reduced density matrix of qubit i at steady
state. Here we restrict to the repeated interaction model
because for the harmonic bath model interqubits currents are
zero.

Plotting the mutual information of a two-qubit pair against
their corresponding interqubit current in Fig. 8, we see that
the values of the mutual information are bounded from below
for each value of the interqubit current. This means that to
establish a larger current between two qubits these necessarily
need to be strongly correlated.

This fact suggests that there must be a relation between
the two quantities as they both depend on the coherences and
correlations present in the system. In the following we derive
a lower bound for the mutual information in terms of the qubit
current. First, in our simulations, we observe that the reduced

density matrix for each qubit pair is of the X form:

ρi, j =

⎛
⎜⎝

r1,1 0 0 0
0 r2,2 r2,3 0
0 r∗

2,3 r3,3 0
0 0 0 r4,4

⎞
⎟⎠. (A2)

The interqubit current depends on the off-diagonal element:

Ci, j = 8Ji, jIm[r2,3]. (A3)

The relation between the mutual information and the entries
of the reduced density matrix is a little more convoluted. For
X states like Eq. (A2) the eigenvalues are

λ1 = r1,1, (A4)

λ2 = 1

2
[r2,2 + r3,3 +

√
(r2,2 − r3,3)2 + 4|r2,3|2], (A5)

λ3 = 1

2
[r2,2 + r3,3 −

√
(r2,2 − r3,3)2 + 4|r2,3|2], (A6)

λ4 = r4,4, (A7)

and the mutual information will therefore depend non-linearly
on |r2,3|. An educated guess for the state with minimum
mutual information for a given off-diagonal coherence |r2,3|
is a state with equal populations: rm,m = 1/4, m = 1, 2, 3, 4.
For such a state the mutual information reads simply

Ii j = 1
4 (ξ+ log ξ+ + ξ− log ξ−), (A8)

where ξ± = 1 ± 4|r2,3|. Therefore, the minimum can be
achieved by using: ξ± = 1 ± |Ci, j |/2Ji, j .

Comparing the lower bound Eq. (A8) with the numerical
results of the quantum mutual information for qubits 1 and 3
against C1,3 in Fig. 8 we see that the lower bound is indeed
very tight.

We have also checked the presence of tripartite entangle-
ment in the system detected by a non positive density matrix
after partial transposition. Even for the relatively high values
of the temperatures we have considered, we do observe indeed
tripartite entanglement which however does not seem to bear
a relation with the functioning of the three qubit machine as
one of the ten operating modes listed in Table I.
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