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Daniel Alonso1, and Gerardo Adesso2

1Dpto. de F́ısica and IUdEA: Instituto Universitario de Estudios Avanzados
Universidad de La Laguna, 38203 Spain
2School of Mathematical Sciences and Centre for the Mathematics and Theoretical Physics
of Quantum Non-Equilibrium Systems
The University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

(Received: July 22, 2017; Accepted: August 1, 2017; Published: November 30, 2017)

Abstract. When deriving a master equation for a multipartite weakly-interacting open
quantum systems, dissipation is often addressed locally on each component, i.e. ignoring the
coherent couplings, which are later added ‘by hand’. Although simple, the resulting local
master equation (LME) is known to be thermodynamically inconsistent. Otherwise, one
may always obtain a consistent global master equation (GME) by working on the energy
basis of the full interacting Hamiltonian. Here, we consider a two-node ‘quantum wire’
connected to two heat baths. The stationary solution of the LME and GME are obtained
and benchmarked against the exact result. Importantly, in our model, the validity of
the GME is constrained by the underlying secular approximation. Whenever this breaks
down (for resonant weakly-coupled nodes), we observe that the LME, in spite of being
thermodynamically flawed: (a) predicts the correct steady state, (b) yields with the exact
asymptotic heat currents, and (c) reliably reflects the correlations between the nodes. In
contrast, the GME fails at all three tasks. Nonetheless, as the inter-node coupling grows, the
LME breaks down whilst the GME becomes correct. Hence, the global and local approach
may be viewed as complementary tools, best suited to different parameter regimes.

Keywords: Open quantum systems; quantum master equations; heat transport; Gaussian
states; quantum thermodynamics; quantum correlations.

1. Introduction

The Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) quantum master equa-
tion [29, 18] is central in the theory of open quantum systems. It reads

d̺

dt
= L̺ = − i

~
[H ,̺] +D̺

= − i
~

[H ,̺] +
∑

k

γk

(
Ak̺A

†
k −

1

2
A
†
kAk̺−

1

2
̺A
†
kAk

)
, (1)
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and generates a quantum dynamical semigroup, i.e. it gives rise to a dynamical
map

̺(t) = V(t)̺(t0) = eL(t−t0)̺(t0)

with the semi-group property V(t)V(s) = V(t+s). This type of memoryless or
Markovian evolution arises naturally when an open quantum system couples
weakly to an environment at inverse-temperature β = (kBT )−1, so that the
typical relaxation time is by far the largest scale in the problem [5].

Among many others, equation (1) has the following key properties:

(i) It ensures a completely positive dynamics which, in turn, implies that
the relative entropy S(̺1|̺2) := tr {̺1(log ̺1 − log̺2)} between any
two states evolving under V(t) decreases monotonically [43, 32], i.e.,

d

dt
S(̺1(t)|̺2(t)) ≤ 0 .

(ii) Under mild assumptions, the thermal state τ ∝ exp (−βH) is the only
stationary state of V(t), i.e. Lτ = 0 [42]. That is, (1) describes relax-
ation towards thermal equilibrium.

Interestingly, one may use (1) to model a continuous (quantum) thermo-
dynamic cycle [3, 25]. By coupling the open system (i.e. the working sub-
stance) to various heat baths at different temperatures and possibly also to
a periodic external drive, a stationary non-equilibrium state builds up. The
direction of the corresponding steady-state heat currents may be controlled
by suitably engineering the spectrum of the working substance. Hence, we
can speak of ‘quantum heat engines’ or ‘quantum compression/absorption
refrigerators’ [35], which have attracted a lot of attention in recent years
[26, 27, 15, 51, 17].

In such quantum heat devices, the stationary incoming heat currents
{Q̇α} and the power output −P are defined as [3]

d

dt
tr {H ̺∞} = 0 = P+

∑

α

Q̇α := tr

{
∂H

∂t
̺∞

}
+
∑

α

tr {HDα̺∞} , (2)

where ̺∞ is the steady state of the working substance, and Dα denotes the
GKLS dissipation super-operator associated with bath α.

Owing to properties (i) and (ii) above, the stationary heat currents Q̇α

satisfy the relation
∑

α Q̇α/Tα ≤ 0, which is the Clausius inequality. In
other words, addressing the dynamics of quantum heat devices with GKLS
quantum master equations ensures thermodynamic consistency.

When modelling open quantum systems made up of multiple weakly-
interacting parts coupled to local environments, it is commonplace to build
the corresponding master equation by simply adding the local dissipators for
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the relaxation of each individual component (ignoring their coherent interac-
tions). That is, for a multipartite system with Hamiltonian H =

∑
j hj+kV ,

where V contains all the internal couplings (of strength k), one would writea

d̺

dt
= − i

~
[H ,̺] +

∑

α

D(k=0)
α ̺ . (3)

Although (3) is in GKLS form, property (ii) ceases to hold, as the dissipa-

tors D(k=0)
α do not match the Hamiltonian H , but rather the non-interacting∑

j hj. Consequently, describing heat transport with the local master equa-

tion (3) may lead to thermodynamic inconsistencies: Heat could, for instance,
flow against the temperature gradient [28], or non-vanishing steady-state heat
currents could be present even if all reservoirs are set to the same temperature
[45].

These observations, strongly advise to follow the standard procedure to
consistently obtain the correct global dissipators Dα [5]. However, doing
so may become particularly challenging when dealing with large systems,
e.g. long harmonic or spin chains. Moreover, in such cases the capital as-
sumption that the dissipation time scale is by far the largest in the problem
is likely to break down as the spectrum of the system becomes denser [53];
Equation (1) would then lack a microscopic justification. These difficulties
explain the popularity of simple approaches based on weak internal coupling
approximations such as equation (3) [53, 46]. In this paper we wish to put
such local approaches to the test.

In particular, we choose an exactly solvable model consisting of a two-
node harmonic chain weakly coupled on both edges to two heat baths at
different temperatures. Our system is set up so that, when the inter-node
coupling strength becomes comparable or smaller than the node-baths dissi-
pative couplings, the secular approximation underlying (1) may break down.
This allows us to gauge to which extent the local master equation (LME) re-
mains an accurate description. Interestingly, we find that the local approach
yields an excellent approximation to the steady state, the stationary heat cur-
rents, and the asymptotic quantum and classical correlations, in the regime
of parameters in which the global master equation (GME) fails even quali-
tatively. More generally, it follows that heat conduction through arbitrarily
large harmonic chains can be correctly modelled within the local approach
always provided that the internal couplings are sufficiently weak. The present
work thus adds to the efforts of [40, 11, 53, 44, 41, 45, 28, 46, 38, 10] to clarify
the dos and don’ts of modelling heat transport through multipartite open
quantum systems.

This paper is structured as follows: In Sect. 2.1 we outline the steps
of the microscopic derivation of the GKLS quantum master equation. We

aFor simplicity, we are omitting the Lamb shift (cf. Sect. 2.2).
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then proceed to derive and solve such an equation for our specific model
in Sect. 2.2. The alternative local master equation is obtained in Sect. 2.3.
Before proceeding to benchmark both approaches, in Sect. 3 we sketch how
the exact steady-state solution of the system may be obtained by solving the
quantum Langevin equations. We then devote Sect. 4 to present and discuss
our results. Finally, in Sect. 5 we summarize and draw our conclusions.

2. Deriving Markovian Master Equations

2.1. The model, the Markovian master equation and its steady
state

We will consider a two-node ‘quantum wire’ (see Fig. 1) consisting of mecha-
nically-coupled harmonic oscillators with bare frequencies ωc and ωh and
coupling strength k > 0. Each node will be weakly connected to a bosonic
bath, i.e. an infinite collection of uncoupled harmonic modes in thermal
equilibrium (at temperatures Tc < Th). The total Hamiltonian may be cast
as

H =
∑

α∈{c,h}

(ω2
α

2
X2

α +
P 2

α

2

)
+
k

2
(Xc −Xh)2

+
∑

α∈{c,h}

∑

µ

(ω2
α,µmα,µ

2
x2
α,µ +

p2
α,µ

2mα,µ

)

−
∑

α∈{c,h}
Xα ⊗

∑

µ

gα,µxα,µ , (4)

where the masses of the nodes have been set to mc = mh = 1, and the
constants gα,µ stand for the coupling strength between node α and each
of the environmental modes (α, µ). Also, in all what follows we shall set
~ and the Boltzmann constant kB to 1. We will refer to the first three
terms in the right-hand side of (4) as the free (system + baths) Hamiltonian
H0 = HS + HB , as opposed to the last term H int, which describes the
system-baths interaction. For later convenience, we shall also introduce the
notation Bα :=

∑
µ gα,µxα,µ.

We will group the system-baths coupling constants in the spectral density
functions defined as

Jα(ω) := π
∑

µ

g2α,µ
2mµωµ

δ(ω − ωµ) .

In particular, we will choose 1D baths with the Ohmic form

Jc(ω) = Jh(ω) = λ2 ω
Λ2

ω2 + Λ2
, (5)
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Testing the Validity of the ‘Local’ and ‘Global’ GKLS Master Equations

Fig. 1: Schematic representation of the wire. The two harmonic nodes at
frequencies ωc and ωh are coupled through a spring-like interaction of strength
k. Each node is, in turn, dissipatively coupled to a ‘cold’ and ‘hot’ heat bath
at temperatures Tc < Th. The dissipation strength λ2 is assumed sufficiently
weak to justify the use of a perturbative master equation up to O(λ2).

where Λ is a high-frequency cutoff (max{ωc, ωh} ≪ Λ) and the parameter λ
captures the dissipation strength. Note that the bath operators Bα are thus
O(λ).

For completeness, we will now briefly sketch a simple procedure to obtain
the standard second-order Markovian generator for the reduced dynamics of
the system (see [5] for full details). Let us take the Liouville-von Neumann
equation in the interaction picture

dρ̃(t)

dt
= −i[H̃ int(t), ρ̃(t)] , (6)

where H̃ int(t) := eiH0tH inte
−iH0t and [ · , · ] stands for a commutator. For-

mally integrating (6) and assuming that the initial condition is such that

tr{ρ̃(0) H̃ int} = 0 yields the following equation of motion for the system:

dσ̃

dt
= −

t∫

0

ds trB [H̃ int(t), [H̃ int(s), ρ̃(s)]] . (7)

Here, σ̃ := trBρ̃ and trB{ · } denotes trace over the baths. We will now
assume that the dissipation strength λ is so weak that when starting from
a factorized initial condition ρ0 := σ(0) ⊗ τ c ⊗ τ h the propagated state
ρ̃(t) ≃ σ̃(t)⊗τ c⊗τ h remains approximately factorized at all times. τα∈{c,h}
are thermal states for the hot and cold bath. We will also replace σ̃(s) inside
the integral in (7) by σ̃(t), thus making it time-local. The change of variables
s→ t− s yields the Redfield equation [39, 9]

dσ̃

dt
≃ −

t∫

0

ds trB [H̃ int(t), [H̃ int(t− s), σ̃(t)⊗ τ c ⊗ τ h]] . (8)

Notice that the resulting state ̺(t) does keep a memory of the initial con-
dition ̺(0) and hence, (8) is non-Markovian. However, provided that the
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integrand above decays sufficiently fast, one might set t → ∞ in the upper
limit of integration, which is referred to as Born-Markov approximation. This
approximation is justified whenever λ2 ≪ min{T,Λ}.

A further step still remains to be undertaken in order to bring the re-
sulting ‘Markovian Redfield’ master equation to the canonical GKLS form

— the secular approximation. Let us examine H̃ int(t) more closely. One
may always decompose Xα =

∑
ω Lω

α, where [HS ,L
ω
α] = −ωLω

α, so that

H̃ int =
∑

ω e
−iω tLω

α ⊗ B̃α(t), with the interaction-picture bath operator

B̃α(t) = eiHBtBαe
−iHBt. Plugging this into (8) leads to

dσ̃

dt
≃ 1

2

∑

α

∑

ω,ω′

ei(ω
′−ω)tγα(ω)

(
Lω

α σ̃ Lω′

α

† −Lω′

α

†
Lω

α σ̃
)

+ h.c. , (9)

where

γα(ω) = 2 Re

∞∫

0

ds eiω strB{Bα(t)Bα(t− s)} .

Note that we are completely ignoring

Im

∞∫

0

ds eiω strB{Bα(t)Bα(t− s)} ,

which would eventually lead to a mere shift (of order λ2) on the energy levels
of the Hamiltonian (Lamb shift) [5]. The secular approximation consists in
time-averaging of (9) over an interval of the order of the dissipation time
TD ∼ λ−2. All terms with ω′ 6= ω above can then be discarded provided
that they oscillate fast as compared with TD. Returning to the Schrödinger
picture, finally leaves us with the GKLS quantum master equation

dσ

dt
≃ −i[HS ,σ] +

∑

α

Dασ

= −i[HS ,σ] +
∑

α

∑

ω

γα(ω)
(
Lω

α σLω
α
† − 1

2
{Lω

α
†Lω

α,σ}+
)
, (10)

where { · , · }+ stands for anti-commutator. In the next section, we will con-
centrate in obtaining the specific form of the operators Lω

α for the Hamilto-
nian in (4).

Because (4) is overall quadratic in position and momenta, the steady state
will be Gaussian and thus, fully characterized by its first and second order
moments [2]. In fact, one can easily see that 〈Xα〉 = 〈P α〉 = 0, where 〈 · 〉
denotes stationary average. As a result, the steady state will be specified
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Testing the Validity of the ‘Local’ and ‘Global’ GKLS Master Equations

only by the 4 × 4 covariance matrix, with elements [Γ]kl := 1
2 〈{Rk,Rl}+〉,

with ~R = (Xc,P c,Xh,P h)T .
Since we wish to calculate the covariances [Γ]kl rather than the state σ, it

will be more convenient to work with the adjoint master equation [5] which,
for an arbitrary system observable in the Heisenberg picture O(t), reads

dO

dt
≃ i[HS ,O] +

∑

α

D†αO

= i[HS ,O] +
∑

α

∑

ω

γα(ω)
(
Lω

α
†OLω

α −
1

2
{Lω

α
†Lω

α,O}+
)
. (11)

2.2. The global master equation

The first step to derive consistent Lω
α operators will be to rotate HS into its

normal modes. These are

η+ = cos ϑXc − sinϑXh (12a)

η− = sinϑXc + cos ϑXh , (12b)

where the angle ϑ is

cos2 ϑ =
−δ2ω +

√
4k2 + δ4ω

2
√

4k2 + δ4ω
(13)

and, in turn, δ2ω := ω2
h − ω2

c . The corresponding normal-mode frequencies
write as

Ω2
± =

1

2

(
ω2
c + ω2

h + 2k ±
√

4k2 + δ4ω

)
. (14)

After this transformation, the Hamiltonian (4) rewrites as

H =
∑

s∈{+,−}

(Ω2
s

2
η2
s +

Π2
s

2

)
+ HB − (cos ϑη+ + sinϑη−)⊗Bc

+ (sinϑη+ − cos ϑη−)⊗Bh , (15)

where Πs = dηs/dt. By writing ηs = (as +a
†
s)/
√

2Ωs (with as and a
†
s being

annihilation and creation operators on mode Ωs) one can see that Xα =

L
Ω+
α + L

Ω−
α + h.c., where L

Ω+
c := cos ϑa+/

√
2Ω+, L

Ω−
c := sinϑa−/

√
2Ω−,

L
Ω+

h := − sinϑa+/
√

2Ω+, L
Ω−

h := cos ϑa−/
√

2Ω−, and L
−Ω±
α := (L

Ω±
α )†.

Looking back to the right-hand side of (9), we see that there are 16 terms
associated with two different open decay channels, oscillating as ei(ω

′−ω)t at
frequencies |ω′ − ω| = {0, 2Ω+, 2Ω−,Ω+ + Ω−,Ω+ − Ω−}. Provided that the
nodes are sufficiently detuned, i.e. δω ≫ λ2, the secular approximation is
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guaranteed to be valid for any value of the coupling k. However, if ωh − ωc

became comparable or smaller than the dissipation strength λ2, there would
be no justification to discard the non-secular terms oscillating at Ω+ − Ω−
when k becomes very small. Indeed, defining R± := 2k±

√
4k2 + δ4ω one may

write

Ω+ − Ω− =

√
ω2
c + ω2

h

2

(√
1 +

R+

ω2
c + ω2

h

−
√

1 +
R−

ω2
c + ω2

h

)
(16)

whenever R±/(ω2
c +ω2

h)≪ 1, the Taylor expansion
√

1 + x = 1+ x
2 − x2

8 + · · ·
allows to approximate (16) as

Ω+ − Ω− =

√
4k2 + δ4ω

2(ω2
h + ω2

c )
+O

( R2
+

(ω2
c + ω2

h)3/2

)
. (17)

From (17) it is clear that for the secular approximation to be valid the dissi-
pation rate must be such that

λ2 ≪
√

4k2 + δ4ω
2(ω2

h + ω2
c )
, (18)

which, in the limit of resonant nodes simplifies to λ2 ≪ k/ωc. Hence, we
can anticipate that (10) will fail to describe nearly resonant weakly coupled
nodes, which is precisely the regime in which we shall focus our analysis.

The only additional ingredient required to build (11) are the decay rates
γα(±Ω±). A direct calculation leads to

γα(ω) = 2J(ω)[1 + nα(ω)] , (19)

where nα(ω) := (eω/Tα−1)−1 is the bosonic occupation number for frequency
ω at temperature Tα. Note that γα(−ω) = exp (−ω/Tα)γα(ω). Combining
all the above, and after tedious but straightforward algebra, we can obtain
a closed set of equations of motion for the covariancesb 〈η2

±〉, 〈Π2
±〉, and

〈{η±,Π±}+〉. Note that 〈 · 〉 denotes here instantaneous average.

d

dt
〈η2
±〉 = ∆±〈η2

±〉+ 〈{η±,Π±}+〉+
Σ±
2Ω±

(20a)

d

dt
〈{η±,Π±}+〉 = 2〈Π2

±〉 − 2Ω±〈η2
±〉+ ∆±〈{η±,Π±}+〉 (20b)

d

dt
〈Π2
±〉 = ∆±〈Π2

±〉 − Ω2
±〈{η±,Π±}+〉+

Ω±
2

Σ± , (20c)

bIt is indeed enough to consider the equations of motion for the mode occupation num-
bers 〈a†

±a±〉 (which are decoupled), to fully solve the dynamics.
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Testing the Validity of the ‘Local’ and ‘Global’ GKLS Master Equations

where the following notations have been introduced

∆+ :=
cos2 ϑ

2Ω+
[γc(−Ω+)− γc(Ω+)] +

sin2 ϑ

2Ω+
[γh(−Ω+)− γh(Ω+)] (21a)

∆− :=
sin2 ϑ

2Ω−
[γc(−Ω−)− γc(Ω−)] +

cos2 ϑ

2Ω−
[γh(−Ω−)− γh(Ω−)] (21b)

Σ+ :=
cos2 ϑ

2Ω+
[γc(−Ω+) + γc(Ω+)] +

sin2 ϑ

2Ω+
[γh(−Ω+) + γh(Ω+)] (21c)

Σ− :=
sin2 ϑ

2Ω−
[γc(−Ω−) + γc(Ω−)] +

cos2 ϑ

2Ω−
[γh(−Ω−) + γh(Ω−)] . (21d)

Below, it will be convenient to break down each of these coefficients into the
sum of its two constituent terms, as ∆± := ∆c

± + ∆h
± and Σ± := Σc

± + Σh
±,

where e.g. ∆c
+ = cos2 ϑ [γc(−Ω+)− γc(Ω+)]/(2Ω+). The further denotations

Σα
± = Wα

−Ω±
+Wα

Ω±
, where e.g. W c

−Ω+
= cos2 ϑγc(−Ω+)/(2Ω+), will also be

employed later on.
The stationary solution to (20) is simply 〈η2

±〉 = −Σ±/(2∆±Ω±), 〈Π±〉 =
−Ω±Σ±/(2∆±), and 〈{η±,Π±}+〉 = 0, so that the asymptotic covariance
matrix in the original quadratures reads

Γ
G =




[ΓG]11 0 [ΓG]13 0
0 [ΓG]22 0 [ΓG]24

[ΓG]13 0 [ΓG]33 0
0 [ΓG]24 0 [ΓG]44


 , (22)

where [ΓG]11 = 〈ηηη2+〉 cos2 ϑ + 〈ηηη2−〉 sin2 ϑ, [ΓG]22 = 〈ΠΠΠ2
+〉 cos2 ϑ + 〈ΠΠΠ2

−〉 sin2 ϑ,
[ΓG]33 = 〈ηηη2+〉 sin2 ϑ+〈ηηη2−〉 cos2 ϑ, [ΓG]44 = 〈ΠΠΠ2

+〉 sin2 ϑ+〈ΠΠΠ2
−〉 cos2 ϑ, [ΓG]13 =

(〈ηηη2−〉− 〈ηηη2+〉) sin ϑ cos ϑ, and [ΓG]24 = (〈ΠΠΠ2
−〉− 〈ΠΠΠ2

+〉) sin ϑ cos ϑ. Finally, the
steady-state heat currents can be written as

Q̇G
α = tr{HSDασ(∞)} = 〈D†α HS〉

=
1

2

∑

s∈{+,−}

[
∆α

s

(
Ω2
s〈η2

s〉+ 〈Π2
s〉
)

+ ΩsΣ
α
s

]
. (23)

Using (21) we can cast (23) as

Q̇G
h = −Q̇G

c =
∑

s∈{+,−}
Ωs

W c
Ωs
W h

Ωs

Σs
(e−Ωs/Th − e−Ωs/Tc) , (24)

from where it is clear that Th > Tc entails Q̇G
h = −Q̇G

c > 0; that is, heat
always flows from the hotter bath into the colder one.
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J. O. González, et al.

2.3. The local master equation

Recall from Sect. 1 that, while the local master equation looks formally iden-
tical to the GME, the choice of operators Lω

α in the local approach is not
consistent with the Hamiltonian HS . As already advanced and provided
that the coupling k is weak, one could derive two independent local dissipa-

tors D(k=0)
α , acting on the cold and hot nodes separately , to then construct

an approximate equation of motion such as

dσ

dt
≃ −i[HS ,σ] +

∑

α∈{c,h}
D(k=0)

α σ ,

as an alternative to (20). One might argue that this is a convenient strategy
whenever finding all energy eigenstates of the full interacting Hamiltonian is
hard, as these are required to write the decomposition {Lω

α} of the system
operator coupled to each bath [46]. In our simple example, however, the
local approach leads to a more complicated dynamics than the global one —
all 10 independent covariances are needed in order to obtain a closed set of
equations of motion.

Specifically, within the local approach one decomposes Xα = Lωα
α +L−ωα

α ,
where Lωα

α := bα/
√

2ωα, bα is an annihilation operator on node ωα, and
L−ωα

α := (Lωα
α )†. The adjoint master equation (11) thus becomes

dO

dt
≃ i[HS ,O] +

∑

α∈{c,h}

[γα(ωα)

2ωα

(
b†αO bα −

1

2
{b†αbα,O}+

)

+
γα(−ωα)

2ωα

(
bαOb†α −

1

2
{bαb†α,O}+

)]
. (25)

From (25), the equations of motion for the elements of the corresponding
covariance matrix ΓL are found to be

d

dt
〈X2

α〉 = 〈{Xα,P α}+〉+ ∆̃α〈X2
α〉+

Σ̃α

2ωα
(26a)

d

dt
〈P 2

α〉 = 2k〈X ᾱP α〉 − ν2α〈{Xα,P α}+〉+ ∆̃α〈P 2
α〉+

ωαΣ̃σ

2
, ᾱ 6= α (26b)

d

dt
〈{Xα,P α}+〉 = 2〈P 2

α〉+ ∆̃α〈{XαP α}+〉 − 2ν2α〈X2
α〉

+ 2k〈XαX ᾱ〉 , ᾱ 6= α (26c)

d

dt
〈XαP ᾱ〉 = 〈P αP ᾱ〉+ k〈X2

α〉+
1

2
(∆̃α + ∆̃ᾱ)〈XαP ᾱ〉

− ν2ᾱ〈XαX ᾱ〉 , ᾱ 6= α (26d)

d

dt
〈XcXh〉 = 〈XcP h〉+ 〈XhP c〉+

1

2
(∆̃c + ∆̃h)〈XcXh〉 (26e)
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Testing the Validity of the ‘Local’ and ‘Global’ GKLS Master Equations

d

dt
〈P cP h〉 =

k

2
(〈{Xh,P h}+〉+ 〈{Xc,P c}+〉)− ν2c 〈XcP h〉

− ν2h〈XhP c〉+
1

2
(∆̃c + ∆̃h)〈P cP h〉 , (26f)

where

ν2α := ω2
α + k , ∆̃α :=

γα(−ωα)− γα(ωα)

2ωα
, Σ̃α :=

γα(−ωα) + γα(ωα)

2ωα
,

and the angled brackets denote again instantaneous average. The stationary
solution of (26) is cumbersome but the steady-state heat currents can be
compactly cast as

Q̇L
α =

∆̃α

2

[
ω2
α〈X2

α〉+ 〈P 2
α〉+ k(〈X2

α〉 − 〈XαX α̃〉)
]

+
Σ̃α

2

(
ωα +

k

2ωα

)
.

(27)
As anticipated above and unlike (20), (26) does not necessarily yield a ther-
modynamically consistent steady state: One could even encounter striking
situations for which Q̇L

h = −Q̇L
c < 0 for Th > Tc or Q̇L

α 6= 0 for Th = Tc, as
illustrated in [28, 45].

2.4. Comment on the general validity of the local approach
for modelling heat transport under weak internal cou-
pling

In spite of its thermodynamic inconsistencies, as it was pointed out in [46] the
LME (25) can be formally understood as the lowest order in the perturbative
expansion

Dα = D(0)
α +D(1)

α k +D(2)
α k2 + . . . ,

where D(0)
α = D(k=0)

α . The LME (25) would therefore be correct up to O(λ2k)
and any thermodynamic inconsistency encountered should fall within this
‘error bar’.

Note that the GME is itself a perturbative master equation which neglects
corrections of order O(λ3) and below [14]. However, it is guaranteed to
give rise to thermodynamically consistent steady-state heat currents [3, 26],
as it enjoys the GKLS form (cf. Sect. 1). Interestingly, it is the secular
approximation which endows the GME with thermodynamic consistency:
The Markovian Redfield equation (9), i.e. the previous step in the derivation
of (10), is known to break positivity [14] and caution must be exercised when
using it [24].

Coming back to our problem of describing heat transport in the limit
of quasi-resonant weakly-coupled nodes, notice that the secular approxima-
tion is not problematic when invoked in the derivation of (25). Indeed, the
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J. O. González, et al.

operators Lω
α may be expanded as a power series in k in (9). At the zeroth

order in k, each heat bath would contribute to the right-hand side of (9) with
one non-oscillatory secular term and two fast-rotating non-secular terms at
frequencies ±2ωα. These may be safely averaged out provided that ωα ≫ λ2

and regardless of the detuning between the nodes. Consequently, and un-
like (20), the LME should correctly describe the stationary properties of our
system when k/ωc . λ2.

More generally, one can claim that energy transport through an arbi-
trarily long harmonic chain is correctly captured by a LME within its range
of validity; that is, whenever the inter-node couplings are weak. The claim
can be made extensive to heat fluxes on spin chains, which were already ad-
dressed in [53] via a perturbative master equation relying on ‘weak internal
couplings’, precisely in order to bypass the problems created in the GME by
the secular approximation.

Finally, let us note that a natural alternative to the LME in our problem
would be to incorporate the problematic decay channel of frequency Ω+ −
Ω− into the GME, thus arriving at a partial Markovian Redfield equation
(cf. Appendix). However, scaling up the system in the number of nodes
would quickly render this approach too involved to be practical.

3. Exact Non-Equilibrium Steady State

The steady state for an all-linear model can also be found exactly by solving
the corresponding quantum Langevin equations [19, 52, 4]. In this section,
we will limit ourselves to outline the procedure to calculate the stationary
covariances for our particular problem, while full details on its application to
similar settings can be found in e.g. [30, 8, 47, 48, 49].

To begin with, we must mention that the bare frequencies of the nodes
need to be shifted so as to compensate for the distortion caused by the system-
baths interactions. This eventually allows to recover the correct high tem-
perature limit [52]. Hence, in the reminder of this section, we shall make the
replacement ω2

α 7→ ω̃2
α, where ω̃2

α := ω2
α +
∑

µ g
2
α,µ/(mα,µω

2
α,µ). For our choice

of spectral density (5), the shift amounts simply to π−1
∫∞
0 dω J(ω)/ω = λ2Λ.

Starting from (4), one may write the Heisenberg equations of motion for
all degrees of freedom. Formally solving for xα,µ and inserting the result into
the equations for Xα yields the quantum Langevin equations

d2Xα

dt2
+ ω̃2

αXα + k(Xα −X ᾱ)−
∞∫

t0

ds χα(t− s)Xα(s) = F α(t) , (28)

with ᾱ 6= α. These are the equations of motion for two coupled harmonic os-
cillators, each of which is perturbed by the noise F α(t) and relaxes according
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Testing the Validity of the ‘Local’ and ‘Global’ GKLS Master Equations

to the dissipation kernel χα(t). Specifically, these are defined as

F α :=
∑

µ

gα,µ

[
xα,µ(t0) cos ω0(t− t0) +

pα,µ(t0)

mα,µωα,µ
sinωα,µ(t− t0)

]
(29a)

χα(t) :=
∑

µ

g2α,µ
mα,µωα,µ

sinωα,µtΘ(t) =
2

π
Θ(t)

∞∫

0

dω J(ω) sinωt . (29b)

The only assumption that we will make in order to find the exact steady
state is, once again, that system and baths are initialized in the factorized
initial condition ρ0 = σ(t0)⊗ τ c ⊗ τh. We shall also take t0 → −∞. Let us
first concentrate on the (stationary) covariance 1

2〈{Xα(t),Xα′(t)}+〉, which
may be written in terms of the Fourier transform

X̂α(ω) :=

∞∫

−∞

dtXα(t)eiωt

as

1

2
〈{Xα(t),Xα′(t)}+〉 =

1

2

∞∫

−∞

dω′

2π

∞∫

−∞

dω′′

2π
〈{X̂α(ω′), X̂α′(ω′′)}+〉 e−i(ω

′+ω′′)t .

(30)

In turn, X̂α(ω) can be directly found after Fourier-transforming (28), which
yields

[
X̂c

X̂h

]
:= A−1

[
F̂ c

F̂ h

]
(31)

=

[
ω̃2
c − ω2 + k − χ̂c −k

−k ω̃2
h − ω2 + k − χ̂h

]−1 [
F̂ c

F̂ h

]
.

From (29a), one can show that

1

2
〈{F̂ α(ω′), F̂ α′(ω′′)}+〉

= 2πδ(ω′ + ω′′) coth
ω′

2Tα
[J(ω′)Θ(ω′)− J(−ω′)Θ(−ω′)]δα,α′ ,

where the Dirac delta δ(·) is not to be confused with the Kronecker delta
δα,α′ . Consequently, the integral in (30) for e.g. α = α′ = c writes as

〈X2
c〉 =

∞∫

−∞

dω

2π

(
[A−1(ω)]11[A−1(−ω)]11 coth

ω

2Tc
J(ω)

+ [A−1(ω)]12[A−1(−ω)]12 coth
ω

2Th
J(ω)

)
, (32)
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where we are exploiting the fact that our J(ω) is an odd function. The
position-momentum and momentum-momentum covariances are readily ob-
tained as e.g.

1

2
〈{P α(t′),Xα′(t′′)}+〉

=
1

2

∞∫

−∞

dω′

2π

∞∫

−∞

dω′′

2π
(−iω′)〈{X̂α(ω′), X̂α′(ω′′)}+〉 e−i(ω

′t′+ω′′t′′) .

In order to calculate χ̂α(ω) it is useful to note that Im χ̂α(ω) = J(ω)Θ(ω)−
J(−ω)Θ(−ω), and that Re χ̂α(ω) and Im χ̂α(ω) are related through the Kram-
ers-Kronig relation

Re χ̂α(ω) =
1

π
P

∞∫

−∞

dω′
Im χ̂α(ω′)
ω′ − ω , (33)

where P indicates Cauchy principal value. For our choice of spectral density
χ̂h(ω) = χ̂c(ω) = λ2Λ2/(Λ − iω) which, combined with (5), (31), and (32),
allows us to compute all the elements of the exact steady-state covariance
matrix Γ. Finally, following [12, 13], we can cast the exact steady-state heat
currents as

Q̇h = −Q̇c =
k

2
([Γ]14 − [Γ]23) . (34)

Both the steady state covariances and the corresponding heat currents can be
seen to perfectly coincide with those obtained from the Markovian Redfield
equation derived in the Appendix, always provided that the Born-Markov
approximation holds.

4. Discussion

4.1. Steady state and stationary heat currents

In this section we will compare the steady states and the stationary heat
currents predicted by the global, local, and exact approaches. We shall be
especially interested in setting up the wire with quasi-resonant nodes (δω ≪
λ2) so as to confirm our intuition that the LME can succeed in describing
the system when the GME breaks down (cf. Sect. 2.4).

In order to compare states we will make use of the Uhlmann fidelity,
defined as

F(ρ1,ρ2) :=
(

tr
√√

ρ1ρ2
√
ρ1

)2
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Fig. 2: (Colour online) (top row) Uhlmann fidelity F between the exact
steady state Γ and the approximations ΓG and ΓL calculated within the
global (solid) and local (dashed) approach, as a function of the coupling k
at fixed dissipation strength λ2 = 10−3. In (a) frequencies and temperatures
were set to ωh = 2, ωc = 1, Th = 3, and Tc = 2, so that δω ≫ λ2 and
the secular approximation is justified. Hence, the global GKLS equation
is in perfect agreement with the exact result. The LME starts to break
down around k ∼ 0.1, i.e. when the inter-node coupling becomes comparable
to the node frequencies. In (b) the nodes are quasi-resonant (ωc = 1 and
δ2ω = 2 × 10−6), while the temperatures are the same as in (a). Due to the
breakdown of the secular approximation, the global GKLS equation becomes
unreliable. The shaded grey area corresponds to 1 − F(Γ,ΓG) ≥ 10−4. In
contrast, the LME remains accurate in that regime of parameters. (bottom
row) Stationary incoming heat currents from the hot (red) and cold (blue)
baths, as given by the global (thin solid), local (dashed), and exact (thick
transparent) approaches. The parameters in (c) are the same as in (a). As
can be seen, the LME violates the second law of thermodynamics predicting
reversed heat currents for all k. Finally, the parameters in (d) are the same as
in (b). In the shaded grey region, in which the secular approximation breaks
down, the GME greatly overestimates the magnitude of the steady-state heat
currents, while the LME perfectly follows the exact result. For all four plots
Λ = 103. Recall that we work in units of mc = mh = ~ = kB = 1.
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for arbitrary ρ1 and ρ2 [33]. In the case of two-mode Gaussian states with
covariance matrices Γ1 and Γ2 and vanishing first order moments the fidelity
can be cast as [31]

F(Γ1,Γ2) =

[(√
b +
√

c
)
−
√(√

b +
√

c
)2
− a

]−1
, (35)

where a := det (Γ1 + Γ2), b := 24 det [(J Γ1)(J Γ2)− I/4],

c := 24 det (Γ1 + iJ/2) det (Γ2 + iJ/2) ,

and Jkl := −i [Rk,Rl].
As shown in Fig. 2(a), whenever the detuning is large compared with

the dissipation strength, both LME and GME are in perfect agreement with
the exact solution for most parameters. The local approach only starts to
break down when the coupling k becomes comparable or larger than the node
frequencies (i.e. k/ωα & 0.1ωc, where the extra ωc has been merely added
for dimensional consistency), whereas the global master equation remains
correct.

On the contrary, if the detuning is set to δω ≪ λ2, the steady state of
the GME can be seen to disagree with the exact solution when the inter-
node coupling k/ωc approaches or falls below the dissipation strength λ2

(cf. Fig. 3(b)). Recall that this is entirely due to elimination of the non-
secular decay channel at frequency Ω+ − Ω− (cf. Sect. 2.2). Importantly,
the LME is still valid so long as k/ωc ≪ ωc, regardless of the breakdown
of the secular approximation. Eventually, as k decreases further, the nodes
effectively decouple, and the GME correctly predicts a steady state made up
of two uncorrelated thermal modes.

One can also make use of (23), (27), and (34) to compare the steady-
state heat currents. Once again, under large detuning δω, both the local and
global approach are in good agreement with the exact solution (vanishingly
small heat currents), except for when the inter-node coupling becomes com-
parable to the node frequencies, which invalidates the LME. Interestingly, in
Fig. 2(c) we can see that the local approach does indeed violate the second
law of thermodynamics by predicting heat transport against the temperature
gradient (i.e. Q̇h = −Q̇c < 0) for any k [28]. The magnitude of this violation,
however, loosely falls within the ‘error bars’ O(λ2k) [46] of the LME.

On the other hand, Fig. 2(d) shows again a situation in which δω ≪ λ2.
Remarkably, we observe that the global approach largely overestimates the
magnitude of the steady-state heat currents, where F(Γ,ΓG) falls below 1
(i.e. in the grey area). The LME, however, yields a quantitatively good
estimate in all the range of parameters for which it is valid.

We have thus illustrated that the breakdown of the secular approximation
may render the predictions of the global master equation qualitatively wrong,
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while the local approach, in spite of its thermodynamic inconsistency, proves
to be an accurate working tool within its range of applicability.

4.2. Steady-state correlations

As we shall now see, the GME also fails qualitatively in assessing the node-
node correlations (both classical and quantum) when the secular approxima-
tion breaks down. This is not the case for the LME.

We measure the total correlations between the ‘cold’ and ‘hot’ nodes of
the wire by means of the quantum mutual information I(σch) := S(σc) +
S(σh) − S(σch), where S(̺) = − tr {̺ log̺} is the von Neumann entropy
and σα := trᾱ σch stands for the reduced state of node α (the subindices
‘c’ and ‘h’ are added to the stationary state of the wire to emphasize its
bipartite nature). The von Neumann entropy of an n-mode Gaussian state
can be written as [22]

S(Γ) =

n∑

j=1

(2νj + 1

2
log

2νj + 1

2
+

2νj − 1

2
log

2νj − 1

2

)
, (36)

where the νj are the n symplectic eigenvalues of the generic 2n×2n covariance
matrix Γ. These can be obtained from the spectrum {±i ν1, . . . ,±i νn} of
J−1 Γ. For Γ to be physical, the symplectic spectrum must satisfy νj ≥ 1

2 .
In our case, note that e.g. the single-mode covariance matrix Γc results from
retaining only the first two rows and columns of the two-mode covariance
matrix of the full system, i.e. those related to the ‘cold quadratures’ {xc,pc}.

As we can see from Fig. 3(a) the inter-node correlations can be both
overestimated and underestimated by the global master equation whenever
the secular approximation fails. In contrast, the LME assesses I faithfully.
Note from (22) that the stationary covariances 〈xc ph〉 and 〈pc xh〉 (i.e. Γ14

and Γ23) are neglected in the global approach. Indeed, it is easy to see
from the corresponding Markovian Redfield equation (cf. Appendix) that
these covariances are related to the excluded non-secular term at frequency
Ω+ − Ω−. From Fig. 3(b) we observe that the deficit in total quantum
correlations predicted by the GME around k/ωc ≃ λ2 in Fig. 3(a) is precisely
due to the fact that

[ΓG]14 = [ΓG]23 = [ΓG]32 = [ΓG]41 = 0 .

Notice, comparing again Figs. 3(a) and 3(b), that the peak in the total cor-
relations at lower k is explained by the fact that the GME overestimates
〈xc xh〉; once again, within the region in which the secular approximation
breaks down.

It is possible to split the total correlations into a quantum and a classical
share (blue dotted and red dashed lines in Fig. 3(a), respectively). We will say
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J. O. González, et al.

Fig. 3: (Colour online) (a) Excess quantum mutual information ∆I :=
I(ΓG)− I(Γ) (solid purple), classical correlations ∆C← := C←(ΓG)− C←(Γ)
(dashed red), and quantum correlations ∆Q← = ∆I−∆C← (dotted blue), as
follows from the comparison of the global approach with the exact solution
(see main text for definitions). The inset reproduces the main plot, bench-
marking instead the local approach against the exact result. The parameters
are the same as in Figs. 2(b) and 2(d), i.e. we work with small detuning.
While the LME faithfully captures inter-node correlations in all its range of
validity, the GME may both underestimate or overestimate them. In (b) the
quantities ∆Γ14 := [ΓG]14− [Γ]14 (solid) and ∆Γ13 := [ΓG]13− [Γ]13 (dashed)
are plotted for the same parameters as in (a). We see that the failure of
the global approach to correctly assess these covariances (〈xc ph〉 = −〈pc xh〉
and 〈xc xh〉) explains the peaks in (a). In (c) we plot the steady state inter-
node entanglement, as quantified by the logarithmic negativity EN within the
global (solid black), local (dashed black), and exact (thick transparent blue)
approaches. The observation of non-vanishing asymptotic entanglement re-
quires large ratios ω/Tα and very large coupling strengths k. Unfortunately,
this prevents entanglement from being observed in the problematic region
k/ωc . λ2. Interestingly, the LME predicts a saturation of EN for large k,
which is anyway far beyond its range of applicability. In (c) ωc = ωh = 10,
Tc = 1, Th = 2, λ2 = 10−3, and Λ = 103.
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that a bipartite quantum state ̺AB has quantum correlations with respect
to B if there exists no local measurement on B that leaves the marginal of A
unperturbed. This notion of quantumness of correlations is captured by the
discord [34, 20]

Q←(̺AB) := S(̺B)−
[
S(̺AB)− inf

{ΠB
j }

∑

j

pjS(̺A|j)
]
.

Given a complete set of projectors {ΠB
j } on B, ̺A|j := trB{ΠB

j ̺ABΠ
B
j }

denotes the post-measurement marginal of A conditioned on the outcome
j, occurring with probability pj = tr{ΠB

j ̺AB}. Note that discord is not
symmetric, i.e. the quantumness of correlations as revealed by measurements
on B need not coincide with the quantumness of correlations as revealed by
measurements on A.

Note as well that, due to the explicit minimization over all local mea-
surements on B, the evaluation of Q← is often very challenging. Luckily,
restricting the optimization to the set of Gaussian positive operator valued
measurements makes it possible to obtain a closed formula for two-mode
Gaussian states (see [1, 16, 36] for full details). The difference between the
total correlations and the quantum discord is referred to as classical correla-
tions

C←(̺AB) := I(̺AB)−Q←(̺AB) .

As shown in Fig. 3(a), both quantum and classical correlations behave very
similarly to the mutual information within the global approach. This is not
the case, however, for the LME (cf. inset in Fig. 3(a)): at large coupling
strengths (i.e. beyond its range of validity) the local approach may over-
estimate the amount of quantum correlations present between the nodes,
although at sufficiently large couplings, all correlations are largely underes-
timated.

Finally, we may want to look at the inter-node entanglement [23]. En-
tanglement is a somewhat stronger form of quantum correlation since a state
can display non-zero discord and yet be unentangled, but not the other way
around. In the case of two-mode Gaussian states, quantum entanglement can
be gauged by the logarithmic negativity EN , which writes as [50, 37]

EN (Γ) :=
∑

j

max {0,− log (2ν̃j)} , (37)

where ν̃j are the symplectic eigenvalues of the partially-transposed covariance

matrix Γ̃. This is obtained from Γ by simply changing the sign of all covari-
ances involving e.g. the momentum pc and either of the ‘hot’ quadratures.

The buildup of steady-state entanglement requires much larger inter-node
coupling k and large ratios ωα/Tα as shown in Fig. 3(c). While there is no
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reason for the GME not to accurately capture the entanglement as k →
∞, the LME wrongly predicts a saturation in the stationary logarithmic
negativity in that limit. One can obtain the correct scaling of entanglement
at strong coupling from the GME which, for resonant nodes, simplifies to

EN (Γ)
k→∞−→ 1

4
log

2k(1 − eω/Tc)2(1− eω/Th)2

(1− e2ω/T̄ )2ω2
(38)

with T̄ :=
(T−1c + T−1h

2

)−1
.

5. Conclusions

We have studied a simple model for heat transport between two heat baths
at different temperatures when weakly connected through a two-node quan-
tum wire. Due to the weak dissipative wire-baths coupling, it is possible to
address the problem via second-order Markovian quantum master equations.
In particular, we consistently derived the GKLS master equation via a global
treatment of dissipation, and found its steady state, the stationary heat cur-
rents through the wire, and the asymptotic inter-node quantum and classical
correlations. For comparison, we adopted the popular local approach, which
addresses dissipation on each node individually (i.e. ignoring the effects of
the inter-node coupling). Since our model is linear, its steady state can be
obtained exactly by resorting to quantum Langevin equations. This provided
us with means to quantitatively compare the performance of the global and
the local approaches.

As expected, we found that the local approach is only valid when the
internal coupling between the nodes of the wire is weak. Furthermore, as
previously noted, we observed that the local approach does break the second
law of thermodynamics [28], although any violations can be bounded with
suitably-defined error bars within its range of applicability [46].

Interestingly, our setup allows us to consider very weak internal couplings,
comparable with the dissipation strength. In this regime, the crucial secular
approximation breaks down if, in addition, the nodes are nearly resonant.
As a result, the predictions of the global master GME become qualitatively
wrong — the magnitude of the stationary heat currents is largely overesti-
mated, and key features of the correlation-sharing structure are not captured
by the GME. On the contrary, the LME does accurately describe the sta-
tionary properties of the wire. This agrees with previous observations on the
complementarity of GME and LME when describing dynamics [40]. More
generally, the usage of the local approach in the treatment of heat transport
through arbitrarily long harmonic or spin chains [53] may be justified pro-
vided that the internal couplings are weak enough, and always keeping in
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mind that the predictions of the LME should by accompanied by the corre-
sponding error estimates [46].

In spite of these encouraging observations, the local approach should not
be used lightly, especially in quantum thermodynamics. Even though the
LME may be an excellent working tool that even outperforms the canoni-
cal global GKLS master equation in certain regimes, it might as well lead
to qualitatively wrong conclusions, a priori within its range of applicability.
For instance, it has been shown that a local modelling of quantum ther-
modynamic cycles completely fails to account for heat leaks and internal
dissipation effects [6, 7] that can become dominant in the operation of the
device in question. As a result, e.g. intrinsically irreversible models may be
wrongly classified as endoreversible. This is a reminder that perturbative
equations of motion for open quantum systems must always be handled with
care.

Note added: During the preparation of this manuscript we became aware
of the related work by Patrick P. Hofer et al. [21], where local and global
approaches are compared in a quantum heat engine model.
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Appendix: The Partial Markovian Redfield Master Equation

In order to compensate for the deficiencies of the GME one may simply take
into consideration the problematic non-secular term corresponding to the
Ω+ − Ω− channel. Equations (9) and (11) would then need to be combined
as

dO

dt
≃ i[HS ,O] +

∑

α∈{c,h}

∑

ω∈{±Ω±}
γα(ω)

(
Lω

α
†OLω

α −
1

2
{Lω

α
†Lω

α,O}+
)

+
1

2

∑

α∈{c,h}
γα(Ω+)

(
LΩ−

α
†
OLΩ+

α −OLΩ−
α
†
LΩ+

α + LΩ+
α
†
OLΩ−

α −LΩ+
α
†
LΩ−

α O
)

+
1

2

∑

α∈{c,h}
γα(−Ω+)

(
LΩ−

α OLΩ+
α
† −OLΩ−

α LΩ+
α
†

+ LΩ+
α OLΩ−

α
† −LΩ+

α LΩ−
α
†
O
)
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+
1

2

∑

α∈{c,h}
γα(Ω−)

(
LΩ+

α
†
OLΩ−

α −OLΩ+
α
†
LΩ−

α + LΩ−
α
†
OLΩ+

α −LΩ−
α
†
LΩ+

α O
)

+
1

2

∑

α∈{c,h}
γα(−Ω−)

(
LΩ+

α OLΩ−
α
† −OLΩ+

α LΩ−
α
†

+ LΩ−
α OLΩ+

α
† −LΩ−

α LΩ+
α
†
O
)
,

(39)

where the operators Lω
α are those defined in Sect. 2.2.

In principle, a full set of ten dynamical variables would be necessary

to obtain all steady-state covariances. We shall choose D±± := i(a†±a
†
± −

a±a±), S±± := a
†
±a
†
± + a±a±, D+− := i(a†+a

†
− − a+a−), S+− := a

†
+a
†
− +

a+a−, d+− := i(a†+a− − a+a
†
−), s+− := a

†
+a− + a+a

†
−, and n± := a

†
±a±.

As it turns out, the stationary averages of the first six variables vanish (i.e.
〈D±±〉 = 〈S±±〉 = 〈D+−〉 = 〈S+−〉 = 0), so that we are left with only
four relevant observables. The corresponding equations of motion write as
d~y/dt = B~y+ b, where ~y = (n+,n−,d+−, s+−)T , the non-zero elements of b
are given by

[b]1 = W c
−Ω+

+W h
−Ω+

, (40a)

[b]2 = W c
−Ω−

+W h
−Ω−

, (40b)

[b]4 =

√
Ω+

Ω−
(W c
−Ω+

tanϑ−W h
−Ω+

cotϑ)

+

√
Ω−
Ω+

(W c
−Ω−

cotϑ−W h
−Ω−

tan ϑ) , (40c)

and the coefficients of the matrix B read

[B]11 = W c
−Ω+

+W h
−Ω+
−W c

Ω+
−W h

Ω+
,

[B]14 =
1

2
[B]42 =

1

2

√
Ω−
Ω+

([W c
−Ω−

−W c
Ω−

] cotϑ− [W h
−Ω−

−W h
Ω−

] tanϑ) ,

[B]22 = W c
−Ω−

+W h
−Ω−

−W c
Ω−
−W h

Ω−
,

[B]24 =
1

2
[B]41 =

1

2

√
Ω+

Ω−
([W c

−Ω+
−W c

Ω+
] tan ϑ− [W h

−Ω+
−W h

Ω+
] cot ϑ) ,

[B]33 = [B]44

=
1

2
(W c
−Ω−

+W c
−Ω+

+W h
−Ω−

+W h
−Ω+
−W c

Ω−
−W c

Ω+
−W h

Ω−
−W h

Ω+
) ,

[B]34 = −[B]43 = Ω− − Ω+ .

All the remaining coefficients vanish.
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The non-zero elements of the steady-state covariance matrix {ΓR} in the
basis of the normal modes {η−,Π−,η+,Π+} are

[ΓR]11 =
1

Ω−

(1

2
+ 〈n−〉

)
, [ΓR]22 = Ω−

(1

2
+ 〈n−〉

)
,

[ΓR]33 =
1

Ω+

(1

2
+ 〈n+〉

)
, [ΓR]44 = Ω+

(1

2
+ 〈n+〉

)
,

[ΓR]13 = [ΓR]31 =
〈s+−〉

2
√

Ω+Ω−
, [ΓR]14 = [ΓR]41 = −〈d+−〉

2

√
Ω−
Ω+

,

[ΓR]23 = [ΓR]32 =
〈d+−〉

2

√
Ω+

Ω−
, [ΓR]24 = [ΓR]42 =

〈s+−〉
2

√
Ω+Ω− .

(41)
Just like in (22), this can be rotated into the original quadratures by applying
the suitable rotation matrix as defined in (12) and (13).

Finally, the steady state heat currents obtained from the stationary solu-
tion of (39) can be cast as

Q̇R
c = −Q̇R

h = Ω+

[
W c

Ω+
〈n+〉 −W c

−Ω+
(1 + 〈n+〉)

]

+ Ω−
[
W c

Ω−
〈n−〉 −W c

−Ω−
(1 + 〈n−〉)

]

+
1

2

√
Ω+Ω−〈s+−〉

[
(W c

Ω−
−W c

−Ω−
) cot ϑ+ (W c

Ω+
−W c

−Ω+
) tan ϑ

]
.
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