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Abstract
The steady state heat currents of continuous absorptionmachines can be decomposed into
thermodynamically consistent contributions, each of them associatedwith a circuit in the
graph representing themaster equation of the thermal device.We employ this tool to study the
functioning of absorption refrigerators and heat transformers with an increasing number of active
levels. Interestingly, such an analysis is independent of the particular physical implementation
(classical or quantum) of the device.We provide new insights into the understanding of scaling up
thermal devices concerning both the performance and themagnitude of the heat currents. Indeed, it is
shown that the performance of amultilevelmachine is smaller or equal than the corresponding to the
largest circuit contribution. Besides, themagnitude of the heat currents is well-described by a purely
topological parameter which in general increases with the connectivity of the graph. Therefore, we
conclude that for afixed number of levels, the best of all different constructions of absorption
machines is the onewhose associated graph is as connected as possible, with the condition that the
performance of all the contributing circuits is equal.

1. Introduction

Continuous quantumabsorptionmachines [1] aremultilevel systems connected to several thermal baths at
different temperatures. Their autonomous functioning can be rigorously described by using the theory of open
quantum systems [2]. Some basicmodels such as the three-level [3, 4], the two-qubit [5] and the three-qubit
[4, 6] absorption refrigerators have beenwidely employed in establishing fundamental relations in quantum
thermodynamics [7]. Besides, several experimental proposals have been put forward, for example those based on
nano-mechanical oscillators or atoms interacting with optical resonators [8, 9], atoms interacting with
nonequilibrium electromagnetic fields [10], superconducting quantum interference devices [11, 12], and
quantumdots [13]. Further, an experimental realization of a quantum absorption refrigerator has been recently
reported [14].

The dynamics of quantummachines is described by amaster equationwhen the couplingwith the baths is
weak enough. Along this paperwe consider in addition systems forwhich two states with the same energy cannot
be connected to a third one through the same bath. This assumption greatly simplifies the quantummaster
equation as the population and coherence dynamics are decoupled in the system energy eigenbasis [2], andwill
be referred in the following as the PCD condition. It guarantees the thermodynamic consistency of themodels
[15, 16], whichmay be brokenwhen some uncontrolled approximations are introduced [17]. Under this
assumption coherences decaywith time and are irrelevant in the steady state functioning of the device, contrary,
for example, to externally driven devices [18] and systems includingmatter currents [19], where theymay play
an important role on the thermodynamic properties.When the PCD condition holds, the populations follow a
continuous timeMarkovmaster equation [20], given in terms of the rates for the transitions between states,
which are always allowed in both directions. In this case a thermal device implemented in a quantum system can
be describedwithin the framework of stochastic thermodynamics [21–23].
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The analysis of the thermodynamic quantities can be realized at different levels of description [24]. From a
macroscopic point of view,where the relevant quantities are the bath temperatures and the physical (total) heat
currents, to amicroscopic description that considers in addition the device structure. This latter perspective is
more andmore relevant as the advance of the experimental techniques allows for the design and the
manipulation of the device. A prominent tool for thismicroscopic analysis is graph theory, where the stochastic
master equation for the populations is represented by a graph. Schnakenberg theory [25] is a popular approach
that gives a decomposition of the total entropy production based on a set of fundamental circuits in the graph.
Basically, Schnakenberg applies Kirchhoff’s current laws to reduce the number of terms appearing in the entropy
production, whichmay be highly beneficial for optimization procedures. It has been used for example in linear
irreversible thermodynamics [26] and in the study of steady-state fluctuation theorems [27, 28]. Thismethod
does not intend to associate an entropy productionwith each circuit. In particular, the attempt to interpret
individually each term in the decompositionmay lead to apparent negative entropy productions, although this
problem can be avoided by a convenient choice of the fundamental circuits [29–31]. However, it has been shown
that the diagnosis of themachine performance greatly benefits from considering the thermodynamic analysis of
not only the fundamental but all the possible circuits in the graph [32–34]. A convenient approach is thenHill
theory [35]. Schnakenberg andHill theory assign the same affinity to each circuit, but the latter considers all the
possible circuits and leads to thermodynamically consistent entropy productions. Bothmethods coincide when
the fundamental set of circuits contains all the possible ones.

In this paperwe useHill theory to fully characterize the two relevant quantities in the study of continuous
absorption devices: the steady state heat currents and performance. Our aim is tofind out underwhat conditions
these quantities are as large as possible, i.e. what is the best construction ofmultilevelmachines. Graph theory
allows us to answer this key question from a very general perspective, looking only at the topological structure of
the graph. Althoughwe aremotivated by the study of quantummodels and in the followingwewill assume the
PCDcondition, our analysis also applies to classical stochasticmodels, includingmesoscopic systemswhere the
relevant degrees of freedomare identified by a coarse graining procedure [36, 37]. In fact, themain advantage of
this approach is thatmany properties of a device can be inferred from its graph representation irrespectively of
its underlying,microscopic ormesoscopic, quantumor classical, realization.

It has been shown that systemswith degenerate energy levels and driven by an external fieldmay present a
linear increment of the heat currents with the number of states [38, 39]. Furthermore, two-strokemodels in the
quasi-equilibrium regime show an improvement in the performance with the number of levels [40]. However,
using a particular construction of continuous absorption devices bymerging three-level systems, Correa [41]
found no changes in the performance and a fast saturation in themagnitude of the heat currents as the number
of levels increases. Thus the question arises whether this limitationmay be overcome by different designs of the
absorption device.

We are interested in continuousmachines that either extract energy from the coldest bath (refrigerators) or
inject energy to the hottest bath (heat transformers).We do not consider devices designed for complicated tasks
involvingmore than one target bath, although our procedure could also be applied to such systems. The best
refrigerators and heat transformers should generally provide the largest possible heat currents and be also able of
reaching the reversible limit for a particular set of the parameters. In order to identify them,wefirst justify that a
machine coupled to three baths is capable of achieving the same currents thanmore complicated devices which
consider additional heat reservoirs. Asmultilevelmachines are composed bymultiple circuits, our next step is to
identify the optimal circuit to be used as building block. In general themagnitude of the heat currents increases
with the transitions rates for any circuit. Hence, to elucidate the role of the circuit structure in the currents we set
the rates tofixed values.Moreover, this condition avoids processes which prevents themachine from reaching
the reversible limit when consideringmultiple circuits. The following step is to determine the graph structure
leading to the largest heat currents considering optimal blocks. Finally, we relax the condition offixed rates to
improve the scaling of the currents with the number of levels without introducing harmful processes as heat
leaks.

The paper is organized as follows: in section 2wemotivate the generic nature of ourwork by describing two
differentmodels of absorption devices which are represented by the same four-state graph. Themaster equation
for all the quantummodels used as illustration of the general results can be obtained using appendix Awith the
Hamiltonians provided in appendix B.We also introduce in section 2 the essential concepts of graph theory
needed to characterize the heat currents associatedwith a circuit inside a general graph. This result allows us to
relate each circuit to a thermodynamicmechanism and classify it attending to its contribution to the overall
functioning of a device coupled to three baths. Althoughwe have used previously the circuit decomposition in a
different context, the analysis of the irreversiblemechanisms arising in thermal devices indirectly connected to
environments [34], we provide now a derivation of it usingHill theory in appendix C. The differences between
Hill and Schnakenberg decompositions are discussed andworked out for the four-state graph in appendicesD
and E. In section 3we analyzemultilevelmachines represented by a graph circuit. Explicit expressions for the
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scaling of the heat currents with the number of levels in the high and low temperature limits are provided in
appendix F.Machines represented by graphswithmultiple circuits are studied in section 4. A simple example to
illustrate the relation between the heat currents and the graph connectivity is presented in appendixG.We draw
our conclusions in section 5.

2.Motivation and background

Wewillmotivate our approach byfirst considering two differentmodels of absorption devices, both connected
to three reservoirs at temperaturesTc (cold),Th (hot) andTw (referred in the following as the temperature of the
work bath, in analogywith devices driven by an externalfield), with < <T T Tc h w. Depending on internal
parameters, the devices can either work as heat transformers, transferring energy from the hot to thework bath,
or as refrigerators, extracting energy from the cold bath assisted by thework bath. Thefirstmodel is the two-
qubit device [5] shown infigure 1(a). Each qubit is connected to a bosonic heat bath at temperaturesTc andTh.
The interaction between them ismediated by another bath at temperatureTw. The state of thismachine can be
expanded in the product state basis ñ º ñ∣ ∣1 0 0h c , ñ º ñ∣ ∣2 0 1h c , ñ º ñ∣ ∣3 1 0h c and ñ º ñ∣ ∣4 1 1h c , with energies

=E 01 , w=E c2 , w=E h3 and  w w= +( )E c h4 .When the system is weakly coupled to the reservoirs, the
dynamics of the populations is described by amaster equation

å= + +
=

( ) ( ) ( ) ( )
t

p t W W W p t
d

d
, 1i

j
ij
c

ij
w

ij
h

j
1

4

where pi are the populations, aW 0ij the transition rates associatedwith the couplingwith the bathα, and
= -åa a

¹W Wii j i ji . For our purpose now is only important that the non-zero rates associatedwith the cold bath
correspond to transitions «1 2, «3 4, with the hot bath to «1 3, «2 4, andwith thework bath to «2 3.

The secondmodel is a photoelectric device [32, 42–44] composed of two single-level, spinless quantumdots
with energies Ec andEh that can be both occupied at the same time. Each dot is connected to ametal electrode
with chemical potential m < <E Ec h and temperaturesTc andTh, see figure 1(b).We choose the same chemical
potential in order to avoid introducingmechanical work and assume that neither the temperatures nor the
chemical potential aremodified by the interchange of electrons through the quantumdots. The system states are
º1 0 0h c, º2 0 1h c, º3 1 0h c and º4 1 1h c, with energies =E 01 , =E Ec2 , =E Eh3 and = +E E Ec h4 , where

now a0 and a1 are the number of electrons in the dotα. Transitions between the two dots are supported by an
additional radiation source (for example the Sun in photovoltaicmodels [32, 44]) at an effective temperatureTw.
Considering aweak couplingwith the electrodes and a negligible line broadening of the energy levels, the device
dynamics can be described by an stochasticmaster equation [45] in the form (1), but with transition rates
determined by the particularities of the physicalmodel under consideration. In the case of the absorption device
with bosonic baths the rates are proportional to Planck distributions, while for the photoelectric device they are
proportional to Fermi functions.

Figure 1. Schematic representation of (a) a two-qubit device and (b) a photoelectric device. (c)The same graph, 4, represents the
master equation associatedwith each one. Three circuits can be indentified: (d) 1, (e) 2 and (f) 3.
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The relevant point for our analysis is that since themaster equations have the same structure, the devices
share several thermodynamic properties that stemdirectly from it. The different physics involved in each case is
only reflected in the particular values of the transition rates. Themaster equationmay be represented by a
network, aweighted and labeledmulti-digraph.However, as transition between states are always allowed in both
directions, wewill use a simpler representation consisting in a labeled graph, with vertices associatedwith the
system states and undirected edges with the transitions [25, 35].When necessary, an arbitrary orientation can be
assigned to the graph and aweight to each edge, given by the corresponding transition rate. For example, the
representation of (1), denoted in the following by 4, is shown infigure 1(c). The circuits of 4, defined as a cyclic
sequence of distinct edges, are displayed infigures 1(d)–(f). Circuits 1 and 2 participate in different processes
depending on their two possible orientations, referred as cycles. For example the cycle  º


{ }1, 2, 3, 11 absorbs

energy from the cold andwork baths that is rejected to the hot bath, whereas the opposite cycle

- º


{ }1, 3, 2, 11 absorbs energy from the hot bath and rejects it to the cold andwork baths. In both processes
there is a net exchange of energy with the three baths.

The circuit 3 involves only two baths (cold and hot) and in ourmodels does not lead to any net exchange of
energy. This is a consequence of having the same energy gap for transitions assisted by the same bath.However,
inmore general setupswith different transition energies, = + DE E34 12 and = + DE E24 13 with

= -E E Eji i j, there is a heat leakwhich increases with the energy shiftΔ [33].
The overall physical heat currentsa˙ and the performance of the device are then the result of the interplay of

the differentmechanisms related to each circuit. In spite of the simplicity of the previous qualitative
interpretation, themicroscopic currents a n˙ ( )q corresponding to each circuit in the graph are not
straightforwardly obtained from the physical currents.We introduce below the concepts of graph theory needed
to characterize them.

2.1. Graph, circuits and steady state heat currents
For simplicity we consider systemswithN states of energies Ei,  i N1 , represented by a connected
graph and coupledwith thermal baths. The generalization for systems exchanging particles without involving
anymechanical work, as the absorption device offigure 1(b), is straightforward. The system transitionsmay be
coupled to one or several independent heat baths, each one in equilibrium at temperatureTα,  a R1 . The
system evolution is described by amaster equation

å å=
a

a

= =

( ) ( ) ( )
t

p t W p t
d

d
, 2i

j

N R

ij j
1 1

where pi is the normalized probability distribution to be in the state i, aW 0ij is the transition rate from the
state j to the state i due to the couplingwith the bathα, and

å= -a a

¹

( )W W . 3ii
j i

ji

The transitionmatrix W , with elements = åa
a

=W Wij
R

ij1 , is singular, which guarantees the existence of a non-
trivial steady state solution of (2) and the conservation of the normalization. In addition, we assume that

=
a

a
a

⎡
⎣⎢

⎤
⎦⎥ ( )

W

W

E

k T
exp , 4

ji

ij

ji

B

where kB is the Boltzmann constant. If the transition rates aWij for >j i are known, the remaining rates can be
determined by using (3) and (4).

Themaster equation (2) is represented by a graph ( )N U, composed ofN vertices andUundirected edges.
Let xe be an edge in the graph,  e U1 . In the following


xe will denote an edge oriented from vertex ie to je,

whereas-

xe connects je to ie, in both cases due to the couplingwith the bath ae. Oriented edges are related to

rate coefficients by = a( )W x We j ie e

e and - = a( )W x We i je e

e . An algebraic valuemay be assigned to any oriented

subgraph 


s of  , composed of s U oriented edges

xe [25],

   =
a

a

=

 
( ) ( ) ( ), 5s

R

s
1

where, if the subgraph involves edges associatedwith the bathα,

  =a

aÎ

 ( ) ( ) ( )W x , 6s
e s

e
,

with aÎe s, the product over all the directed edges of 


s corresponding to this bath, and otherwise  =a


( ) 1s .

Both 


( )s and  a


( )s are positive real numbers. Amaximal tree  m ,  m N1 T , is a subgraph of 

containing -N 1edges without forming any closed path. The oriented subgraph 
m
i is amaximal tree inwhich

4

New J. Phys. 19 (2017) 113037 JOGonzález et al



all the edges are directed towards the vertex i. A chord of amaximal tree is one of the - +U N 1edges that are
not part of it. The subgraph obtainedwhen a chord is added to amaximal tree has only a circuit n ,  n N1 C .
When removing the circuit from the previous subgraph, a collection of edges remains. Orienting them towards

the circuit, a forest  n
b
is found. The indexβ indicates that for a given circuit different forests can be found,

resulting fromdifferentmaximal tress. The number ofmaximal trees (NT), circuits (NC) and forests depend on
the topological structure of the graph  . Each circuit n may be oriented in one of the two possible directions,
leading to the cycles n


and - n


. Some examples are shown infigure 2. In appendix Cwe useHill theory to show

that the steady state heat current associatedwith a circuit is given by

       = - - - -a n a n n n
a

n
-

  
˙ ( ) ( ) ( ∣ )[ ( ) ( )] ( ) ( )q T D XWdet . 71

The factorD is calculated using

  å å= = ~

m

m

= =


( ) ( ) ∣ ( )∣ ( )D Wdet . 8

i

N N

i
1 1

T

The quantity  >( )D 0 increases with the complexity (both the number of vertices and edges). It is a factor
which reduces the population in a circuit and therefore the corresponding heat currents when considering
machineswith an increasing number of them. Thematrix

~
W is obtained from the transitionmatrix W by

replacing the elements of an arbitrary row by ones, whereas thematrix - n( ∣ )W is obtained by removing from
-W all the rows and columns corresponding to the vertices of the circuit. Indeed, - n( ∣ )Wdet is the sumof the
forests of n and can be thought of as an ‘injection of population’ through edges not belonging to it.

We have also introduced the cycle affinity associatedwith the bathα,


 

 
=

-
a

n

a
n

a
n

 


⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )
( )X k ln , 9B

and then the total cycle affinity is

 
 

 
å= =

-
n

a

a
n

n

n=

  


⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

( )
( )X X k ln . 10

R

1
B

The quantity - a
a

n


( )T X is just the net amount of energy interchanged between the bathα and the system

when performing the cycle n

. Notice that  - = -a

n
a

n
 

( ) ( )X X and hence each cycle is related to a process
where some energy is either absorbed fromor rejected to the bath. The circuit heat current (7) can be viewed as
the result of the competition between the two cycles, described by     - - -a n n

a
n

  
[ ( ) ( )] ( )T X , weighted by

how the circuit is immersed in the graph, which is contained in  - n
-( ) ( ∣ )D Wdet1 .

As a consequence of (4)

å =
a

a
a

n
=


( ) ( )T X 0, 11

R

1

reflecting that the net energy exchanged by the systemwith the baths along a complete cycle is zero. Using it the
following relation is found,

å =
a

a n
=

˙ ( ) ( )q 0, 12
R

1

and since the only contribution to the steady state entropy production is due tofinite-rate heat transfer effects,
the circuit entropy production is

Figure 2. (a)Amaximal tree  1 of 4 oriented towards the vertex 1 is denoted by 


1

1
. (b)When adding the chord x1 (dashed line) to

 1, the circuit 1 is obtained. (c)Removing the circuit (dashed line) and orienting the remaining edges towards it, the forest 


1
1
is

found. The cycles 


1 and -


1 are shown in (d) and (e).
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
 å= -n

a

a n

a=

˙( )
˙ ( )

( )s
q

T
0, 13

R

1

where the inequality is shown in appendix C. These two last equations assure the consistency of the circuit heat
currents and the entropy productionwith the first and second laws of thermodynamics. Finally, the total entropy
production is given by = ån n=

˙ ˙( )S sN
1

C and the physical heat currents by = åa n a n=
˙ ˙ ( )qN

1
C . They can be

directly obtained from the transition rates by using (7), without determining the steady state populations. As an
illustration of the circuit decomposition, the heat currents for the graph 4 are worked out in appendixD. Let us
remind that other decompositions of Ṡ are possible andwe briefly discuss them in appendix E.

The circuit heat currents (7) are homogeneous functions of degree 1with respect to the transition rates, that
is

   s s s  a a
a n a n a a˙ ( ) ˙ ( ) ˙ ˙ ( )W W q q; ; , 14ij ij

with s > 0. Therefore, the currents can be alwaysmodified by changing the rates, provided that the assumptions
to obtain themaster equation remain valid. This property emphasizes the importance of the graph topology.

2.2. Classification of circuits
The contribution of each circuit n to the physical heat currents can be classified attending to their non-zero
affinities aX :

(i)  =a
n


( )X 0 for all the baths. These circuits will be referred as trivial circuits, as they do not contribute
neither to the steady state heat currents nor to the entropy production.

(ii) Condition (11)prevents any circuit fromhaving only a non-zero affinity aX .

(iii)  ¹a
n


( )X 0 only for two baths, a a a= ,1 2. Then there is only a net energy transfer between them,
although other baths could participate in the cycle. Using (12) and (13), the following condition is found

 -a n
a a

⎛
⎝⎜

⎞
⎠⎟˙ ( ) ( )q

T T

1 1
0. 15

1
2 1

Taking <a aT T
1 2

, the heat currents verify  >a n˙ ( )q 0
2

and  <a n˙ ( )q 0
1

. Therefore the net heat current
associatedwith these circuits alwaysflows from the higher temperature bath to the lower temperature one.
In the context of refrigerators and heat transformers these circuits are related to heat leaks that decrease the
performance [33, 34].

(iv)  ¹a
n


( )X 0 for three baths, a a a a= , ,1 2 3. They will be referred as three-bath circuits in the following.
Equation (11) implies that, given a circuit orientation, two of the affinities and their corresponding heat
currentsmust have the same sign. Considering = = -a a a( ) ( ) ( )X X Xsgn sgn sgn1 2 3 and using again (12)
and (13), we obtain

  - + -a n
a a

a n
a a

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟˙ ( ) ˙ ( ) ( )q

T T
q

T T

1 1 1 1
0. 16

1
3 1

2
3 2

The formalism applies also to circuits with non-zero affinities associatedwithmore than three baths, but
they are not relevant for our analysis.

2.3. Circuits in refrigerators andheat transformers
For simplicity we discuss now refrigerators, but the results are also valid for heat transformers. In general, the
environmentmay be composed by the target coldest bath, a collection of sink baths with temperatures { }Th i,

(where the surplus energy is rejected) andwork bathswith temperatures { }Tw i, (supplying energy to complete
the cycles). Let a{ }X i, be the affinities of a particular circuit. Equation (7) implies that we can alwaysfind a hot
and awork bathwith temperatures and affinities given by º åa

a
a

aT X T Xi i
i

,
, (a = h w, ), such that tuning

their rate values (14)we obtain the same or larger heat currents than in the original system. Therefore we focus in
the following on circuits and thermalmachines coupled to three thermal bathswith temperatures < <T T Tc h w.

In the construction of the device we do not consider circuits with two edges associatedwith different baths
connecting the same vertices, as it would lead directly to heat leaks (iii). To performuseful tasks wemust include
three-bath circuits (iv), which can be classified as:

(a) a = h1 and a = w2 , which leads to   >n n˙ ( ) ˙ ( )q q, 0h w and  <n˙ ( )q 0c .
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(b) a = c1 and a = h2 , giving now   <n n˙ ( ) ˙ ( )q q, 0c h and  >n˙ ( )q 0w .

(c) a = c1 and a = w2 , for which

  = = -n n n
  

[ ( )] [ ( )] [ ( )] ( )X X Xsgn sgn sgn . 17c w h

In cases (a) and (b) heat is simply transferred from thework to the cold bath, whereas the hot bath absorbs or
gives up some energy. In (c) two different directions for the heat currents are possible:   <n n˙ ( ) ˙ ( )q q, 0c w ,
 >n˙ ( )q 0h and   >n n˙ ( ) ˙ ( )q q, 0c w ,  <n˙ ( )q 0h , which correspond to the conditions for the heat currents in

heat transformers and refrigerators respectively. Therefore equation (17) settles the condition for the affinities in
useful circuits. The particular workingmodewill depend on the systemparameters.

3. Thermalmachines represented by a circuit graph

In this sectionwe analyze thermalmachines that are represented by a circuit graph,  = N , with N 3 states
(vertices) andU=Nundirected edges.We consider useful three-bath circuits for which (17) holds. Along this
sectionwe shallmake explicit the circuit length (the number of states or edges) by the superscriptN. In this case
the physical and circuit heat currents coincide. From (10)we obtain    - = -

  
( ) ( ) [ ( ) ]X kexp

N N N
B , and

then the physical heat currents are given by

     = = - - -a a a
a

  ˙ ˙ ( ) ( ){ [ ( ) ]} ( ) ( )q T X k X1 exp , 18N N N N
B

where

    = -
 

( ) ( ) ( ) ( )D . 19
N N N1

Notice that the dependence on the arrangement of the edges in the circuit is contained in 


( )N
and the

currents vanish for  =


( )X 0
N

. Using (11), the circuit affinity is rewritten as

  = - + -
  ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )X

T

T
X

T

T
X1 1 . 20

N c

w

c N h

w

h N

The device operatingmode depends only on the parameter = -( ) ( )x T X T Xc
c

h
h ,  x0 1, which is

independent of the particular circuit orientation, and for  =


( )X 0
N

results in

=
-
-

( )
( )

( )x
T T T

T T T
. 21r

c w h

h w c

When <x xr , the device operates as an absorption refrigerator whose coefficient of performance is




e = =

-

˙
˙ ( )x

x1
. 22c

w

The coefficient of performance reaches theCarnot value e = - -( ) [ ( )]T T T T T Tc w h w h cC when x approaches

to xr frombelow but at vanishing heat currents (  =


( )X 0
N

).When >x xr , themachine operates as a heat
transformerwith efficiency




h =

-
= -

˙
˙ ( )x1 , 23w

h

reaching theCarnot value h = - -( ) [ ( )]T T T T T Tw h c h w cC when x approaches to xr from above. In

consequence, the device performance depends only on the circuit affinities a


( )X
N
, irrespective of the value

 


( )N
, and theymay be suitably tuned to reach the reversible limit for any graph circuit.

3.1. Circuit structure, performance and heat currents

In the following andwithout loss of generality, we choose a circuit orientation such that  >


( )X 0
N

. The

affinities and the algebraic value 


( )N
depend only on the number of edges and their associated transitions

rates. In particular,  


( )N
is the product ofN transition rates.However, the factorD depends also on the

arrangement of the edges through the orientedmaximal trees in (8). The =N NT maximal trees are obtained by
removing in each case one of the edges in the circuit.We denote by  j themaximal tree obtained by removing

the edge starting in the state j. The term ( )D N is the sumofN2 terms 


( )i

j
, each one composed of the product

of -N 1 transition rates.

7

New J. Phys. 19 (2017) 113037 JOGonzález et al



3.1.1. Dependence on the transition rates
From the previous results for andD and after a straightforward calculation, the heat currents are bounded by

 <a a
a


∣ ˙ ∣ ∣ ( )∣ ( )T W X , 24m
N

whereWm is theminimum rate in 


( )N
. As intuitively expected, increasing the lowest ratesmay result in

larger heat currents for any circuit. The remaining question is thenwhat kind of circuit shows the largest heat
currents for a set offixed transition rates. In order to answer it, we assume in the following that the available
resource in themachine design is a set of three undirected edges with fixed transitions rates,Wα and a-W ,
associated the first with energy transfer to and the secondwith energy absorption from the bath a = c w h, , .
This construction can always overcome complicated oneswithmore that three edges using a proper scaling of
the rates, see (14). Besides, it implies fixed energy gaps º a∣ ∣E Eij for transitions assisted by the same bath and:

(i) When two edges, -xi 1 and xi, connecting the state i are associated with the same bath, then
=-

 ( ) ( )W x W xi i1 for any of the two cycles as a consequence of the PCD condition, see figure 3(a).

(ii) The minimum number of edges required to construct a useful three-bath circuit is three, therefore
+ =E E Ec w h as a result of (11) and (17). For simplicity we take ¹E Ec w.

Considering these points, any circuitmust be constructed adding either two-edge sets aa{ }, with
a = c w h, , , or three-edge sets { }cwh to guarantee that the change of energy of the system in a complete cycle is
zero.We denote by = + +m m m mc w h the number of two-edge sets in a circuit. Each one of them contributes

with the product a a-W W to the algebraic value 


( )N
, independently of the circuit orientation. Circuits

constructed only by adding two-edge sets ( =N m2 ) are trivial circuits,  =a


( )X 0
m2

. The = ++ -n n n three-
edge sets { }cwh in a circuit contribute either with the product - -W W Wc w h (sets +n ) or -W W Wc w h (sets -n ) to

 


( )N
. Notice that when changing the circuit orientation to -


, +n and -n are interchanged. The smallest

useful circuit is a triangle denoted by 3, see for example figures 1(d) and (e). Large circuits N with
= +N n m3 2 states are obtained adding additional two and three-edges sets to 3. Their smallest instances are

shown infigures 4(a) and (d).

3.1.2. Circuit affinities and 


( )
N

The circuit affinities are given by  = -a a
+ -

 
( ) ( ) ( )X n n X

N 3
for a proper choice of the cycles. Both N and

3 have the same value of the parameter x, provided that - ¹+ -n n 0, and then the performance of the circuit
N , given by (22) or (23), is necessarily equal to the performance of 3. In other words, for a fixed set of transition
rates the circuit performance is independent of the number of edges.

The remaining question is whether larger circuits result in an increment of themagnitude of the heat

currents with respect to 3. As a


( )X
N

increases atmost linearly withN, the termdepending on the affinities in

(18) increases atmost asN2, but only when 


( )NX k
3

B remains small. However, the increment of the affinities

with the number of states is compensated by the factor 


( )N
. As the number of terms inD grows quadratically

withN, onewould expect that inmost cases 


( )N
decreases when adding new states and edges to the circuit. In

fact, numerical evidence indicates that when adding two and three-edge sets to a circuit, 


( )N
decreases equal

Figure 3. (a)The state i in a circuit is connected to -i 1 and +i 1 by the same bath. The PCDcondition ( ¹- +E Ei i1 1) requires
< <- +E E Ei i i1 1 or > >- +E E Ei i i1 1. Then, for a given circuit orientation, a path from -i 1 to +i 1 consists in two jumps either

absorbing energy fromor rejecting energy to the bath. In both cases the transition rateWα is the same. (b)When consideringmore
general graphs, the PCDcondition implies that themaximumnumber of edges connecting a state is six in amachine connected to
three baths.
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or faster than -N z , with z 1 for large enoughN, see for example figures 4(b) and (e). Notice that we do not

claim that   <
¢ 

( ) ( )N N
for arbitrary values ofN and ¢N subjected to the condition ¢ >N N . Our

statement only applies to the constructionwhere the circuit  ¢N is obtained by adding two-edge and three-edge

sets to 3, while keeping the edges and the orientation of the latter. Explicit expressions for 


( )N
in the high

and low temperature limits supporting this result are given in appendix F.

We have shown that typically the affinity term in (18) depends linearly onNwhereas 


( )N
decreases faster

than -N 1, and therefore inmost cases the heat currents will decrease when adding additional edges to 3, see
figures 4(c) and (f). An increment in the heat currentsmay be obtained at some extent by adding some three-
edge sets when <z 2while the circuit affinity remains small enough to growquadratically with the number of
states, as shown infigure 4(f) for intermediate temperatures. This improvement, althoughmodest,may be
relevant in situations where the heat currents are intrinsically small. Intuitively, increasing the circuit size
implies the addition of states with larger energies and small populations except for specific values of the
parameters. This small populationmakes harder closing the cycles and then effectively reduces the heat currents.
Thus, the triangle 3 is in general the optimal choice as building block formultilevel devices.

3.2. The triangle 3

There are only two possible configurations of the triangle 3 compatible with condition (17): cwh
3 , shown in

figure 1(d), and wch
3 , where the cold andwork edges are interchanged. Thismachine is one of the reference

models used in quantum thermodynamics and it has been studied in both the cwh [1, 3, 4] andwch [23]

configurations. Since  =a a
 

( ) ( )X Xcwh wch
3 3

for a proper orientation, the circuits show the same thermodynamic

performance. Notice that   =
 

( ) ( )cwh wch
3 3

but  ¹( ) ( )D Dcwh wch
3 3 . Using (18), the heat currents are related

by








=a

a

˙

˙
( )
( )

( )D

D
. 25

wch

cwh
cwh

wch

3

3

For high temperatures, º - »a a a[ ( )]y E k Texp 1B , the arrangement of the edges in the circuit is irrelevant and

  »a a
˙ ˙ 1

wch cwh
. A different picture appears at low temperatures, a y 1,




»

+
+

a

a

˙

˙
( )W W W W

W W W W
. 26

wch

cwh
c h c w

c w w h

Figure 4.Circuits (a)  + m3 2 h formh= 1 and (d)  + +n3 3 for =+n 1. The triangle ( =+n 0) is denoted by cwh
3 . The factor  


( )N

and
the heat currents (both normalized to the triangle values) as functions of the number of statesN are shown in (b) and (c) for  + ;m3 2 h (e)
and (f) for  + +n3 3 . The dashed lines follow a dependence -N 1. The calculations are performed using quantum systems described by
theHamiltonians and coupling operators given in appendix B. The bath temperatures are parameterized by t, with t= 0.3 (circles),
t=1 (squares) and t=6000 (triangles) corresponding to low, intermediate and high temperatures. The transition rates aW are
calculated using (A.4) and (A.5)with =ad 3, g g g= =c h w , w = 7h , w = 0.5c , =T t4c , =T t5h and =T t6w , in units for which
 w= = =k 1B 0 . The lines aremerely eye guides.
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For <W Wc w, the ratio  <a a
˙ ˙ 1

wch cwh
and for >W Wc w,  >a a

˙ ˙ 1
wch cwh

. Then themost favorable
configuration corresponds to the lowest transition rate being associatedwith transitions from the ground state,
by far themost populated in the low temperature limit.

4. Thermalmachines represented by a graphwithmultiple circuits

We study nowmultilevel absorptionmachines withmultiple circuits.We start by analyzing the relation between
the heat currents and the performance of a circuit n in an arbitrary graph  , and the corresponding quantities
for the (isolated) graph circuit n

iso. To this end, we rewrite (7) as

    = -a n n n a n
-˙ ( ) ( ) ( ∣ ) ( ) ˙ ( ) ( )q D D qWdet . 271 iso iso

Using this expressionwe find:

(i)  <a n a n∣ ˙ ( )∣ ∣ ˙ ( )∣q q iso .

(ii)    e e= =n n n n( ) ˙ ( ) ˙ ( ) ( )q qc w
iso and    h h= - =n n n n( ) ˙ ( ) ˙ ( ) ( )q qw h

iso .

Thefirst result indicates that themagnitude of the heat currents associatedwith a circuit in a graph is always
smaller than the one corresponding to the isolated circuit. It follows from (8) by noticing that the product
between a term in the forest - n( ∣ )Wdet and a termof n( )D iso gives the algebraic value of one of the oriented

maximal trees of  . Therefore    - = å ån n m n
m

=
¢

Î


( ∣ ) ( ) ( )DWdet N

i i
iso

1
T , with å nÎi the summation over all the

vertices of n and being the number ofmaximal trees involved ¢N NT T . The second result derives directly from
(22) and (23) and indicates that the circuit performance is notmodifiedwhen the circuit is included in an
arbitrary graph.

4.1. General bound for the performance
A consequence of (ii) is that the device performance cannot exceed the corresponding to the circuit with the best
performance. For example, let us consider a device working as an absorption refrigerator, ̇c and >˙ 0w . The
coefficient of performance is given by









å åe e= -
n

n
n

n

n

=

¢

= ¢+

˙ ( )
˙ ( )

∣ ˙ ( )∣
˙ ( )

q q
, 28

N
w

w N

N
c

w1 1

C

C

C

where n˙ ( )qc is positive for the ¢NC circuits contributing to the cooling cycle, and negative for the  - ¢N NC C
‘counter-contributing’ circuits, corresponding for example to heat leaks and circuits withfinite counter-
currents whichflow in directions against the operationmode [33, 34]. The - N NC C trivial circuits are irrelevant
in this discussion. In consequence, denoting by e n( )max the largest performance of a circuit in the graph,

e e n( ) ( ), 29max

and the equality, e e= n( )max, is reachedwhen  - ¢ =N N 0C C and  e e=n n( ) ( )max for all the circuits. In
particular, e e= C only if all of them achieve theCarnot performance for the same value of the affinity. A similar
analysis applies to the device working as a heat transformer. Therefore, with regard to the performance, optimal
multilevelmachines are represented by graphswithout ‘counter-contributing’ circuits.Wewill impose this
condition in the design of the optimal graph.

4.2. Graph topology and heat currents
Themagnitude of the physical heat currents is determined by the graph topology and the value of the transition
rates.Wefirst explore the graph topology of an arbitrary graphwith the only restriction that two vertices can be
connected by just one edge (see section 2.3).

In general = åa n a n=
˙ ˙ ( )qN

1
C increases with the number of positive contributing circuits ¢N NC C, which

operate in the sameway as the entire device. However, this incrementmay be hindered by the unavoidable
decrease in  - n

-( ) ( ∣ )D Wdet1 when adding new states and edges to a graph. The factorD is the sumofNNT

terms. For circuits of length L, - n( ∣ )Wdet L is the sumof 
~

n( ∣ )Adet L terms. In this expression the submatrix


~

n( ∣ )A L is obtained by removing from
~
A all the rows and columns corresponding to the vertices of the circuit n

L.

Thematrix
~
A is calculated by replacing the diagonal elements aii of the adjacencymatrix A (see for example

[46]) by the vertex degree of the corresponding state i. The non diagonal elements are =a 1ij when states i and j
are connected by an edge, and =a 0ij otherwise. Therefore, when attending to the number of terms, the

magnitude of the heat currents resulting from the positive contributions of  ¢N NL C circuits of length L is
related to the topological parameter
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åt l tº < º
n

n
=

( ) ( )
N

N

N

1
, 30L

N
L

L
b L

1

L

where  l º
~

n n( ) ( ∣ ) NAdetL L
T , with  l <n

- ( )N 1T
L1 . The ratioλmay depend on the position of the circuit in

the graph and in general  l l<n n
¢( ) ( )L L when ¢ >L L. Although tL can be readily calculated, we found that the

upper bound tL
b incorporates the relevant information about the graph topology. In particular, itmakes clear

the relevance of the graph connectivity: favorable graphs consist in asmany small positive contributing circuits
as possible (that is, avoiding heat leaks and another negative contributions), built with the smallest possible
number of states, implying a large graph connectivity. This dependence on the graph topology is weighted by the
transition rates. For high temperatures all circuits participate in the heat currents. However, only small circuits
including the ground state will contribute significantly in the low temperature regime, independently of the total
number of circuits in the graph.

4.2.1. Graphs constructed bymerging triangles
The optimal choice for the building block is the triangle, the smallest possible contributing circuit as described
before.We consider that all the triangles have fixed energy gaps for transitions assisted by the same bath. This is a
necessary condition to achieve themaximal possible connectivity because otherwise adjacent triangles cannot
share any edge. In order to analyze the dependence on the graph topologywe consider now themore restrictive
condition offixed transition rates for each bath. This assumptionwill be relaxed latter.Moreover, we assume the
PCDcondition, that implies now that themaximumvertex degree in the graph is six, i.e. each statemay be
connected atmost to another six ones, see figure 3(b). As a consequence, all the constructed graphs are planar
and tb

3 incorporates the relevant topological information. The number triangles is easily accessible by using the
adjacencymatrix, = { }N ATr 63

3 , where {}Tr denotes the trace.
The graphwith the largest connectivity compatible with our restrictions is denoted by B

4 . It is constructed
usingB units of two triangles sharing one edge, for example one associatedwith thework bath, seefigure 5(a).
We consider square graphswith 1, 4, 9, ...units, being the smallest instance  º=B

4
1

4. By construction, the
two configurations of the triangle, cwh andwch, are present. Besides,many other circuits can be identified. For
example {(0, 0), (0, 1), (1, 1), (2, 0), (1, 0), (0, 0)} is a circuit  + m3 2 h withmh= 1, and {(0, 0), (0, 1), (0, 2), (1, 1), (2,
0), (1, 0), (0, 0)} a circuit  + +n3 3 with =+n 1. All of them follow the same operationmode. There are alsomany
trivial circuits, for example {( ) ( ) ( ) ( ) ( )}0, 0 , 0, 1 , 1, 1 , 1, 0 , 0, 0 . This construction is optimal with respect to

Figure 5. (a)Graph B
4 . States are labeled by the pair ( )n n,c h , being the state energy +n E n Ec c h h. (b) tb

3 as a function of the number of

states for B
4 (triangles),  L

B
4 (squares) and B

3 (circles). (c)Heat currents (normalized toa
˙ cwh

) for two temperature regimes given by
t=0.07 (empty symbols) and t=1 (solid symbols)where =T t5c , =T t6h and =T t7w . The remaning parameters are =ad 1,
g g g= =c h w , w = 1h , w = 0.5c , in units for which  w= = =k 1B 0 . The calculations are performed for quantum systems
described in appendix B. The lines aremerely eye guides.
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the performance because it can attain the reversible limit as there are not ‘counter-contributing’ circuit, see the
discussion for 3 in section 2.

We also consider two subgraphs of B
4 for comparison purposes. Thefirst one is a row of this units, denoted

by  L
B
4 , which represents the absorption device studied in [41]. The second one is obtained considering only a

row and removing the upper hot edges.We use this graph, denoted by B
3 , to compare tL

b with othermeasure of
the graph connectivity in appendixG.

Figure 5(b) shows the parameter tb
3 for 

B
4 ,  L

B
4 and B

3 , considering only complete units in each case. For a

given number of states, larger values of tb
3 correspond to larger number of circuits and therefore to a larger

connectivity.When the number of states increases the parameter tb
3 saturates to a different constant value in

each case. This is reflected in the physical heat currents shown infigure 5(c) for different bath temperatures. This
saturation is due to the difficulty of exploring big circuits or thosewhich are distant from the ground state in
complex graphs. The simple picture based on the parameter tb

3 is weighted by the transition rates. For decreasing
bath temperatures, all the currents converge to the same result, independently of the number of circuits, since
only the triangle including the ground state contributes significantly to them.

In summary, given a set of transition rates and a number of levels, the best topology corresponds to themost
connected planar graph B

4 . This construction only contains trivial and positive contributing circuits and
provides in general the largest heat currents forfixed rates.

4.3. Transition rates andheat currents
Wehave shown that forfixed transition rates the heat currents saturate to a constant value when increasing the
number of states. To overcome this limitation, we now consider a graphwith the optimal topology given by B

4

and relax the condition on the rates but keeping fixed energy gaps. The circuit affinities and then the
performance are notmodified. Considering (4), all the transition ratesmust be taken as asW , with s 1, and

aW the smallest rate. As discussed for circuit graphs, increasing swill lead to larger heat currents.
In particular, we analyze the construction shown infigure 6(a), denoted by HO

B , which has a simple physical
implementation as discussed below. Seeking ameasure of the graph connectivity when the transition rates
increase with s, and in analogywith the adjacencymatrix, we define ¢A with elements ¢ =a sij when states i and j

are adjacent with transition rates asW , andwe denote its spectral radius as r ¢( )A , see appendix G.When
incorporating additional building units into the graph, the spectral radius defined in this way increases nearly
linearly with the number of states, see figure 6(b).

Figure 6. (a)The graph HO
B . (b) Spectral radius as a function of the number of states. The line ismerely an eye guide. (c)Heat currents

(normalized bya
˙ cwh

) as a function of á ñá ñn nc h , calculated for different bath temperatures parametrized by t, with =ad 3,
g g g= =c h w , w = 1h , w = 0.5c , =T t30c , =T t34h and =T 10w

6, in units forwhich  w= = =k 1B 0 .
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The graph HO
B , allowing an infinity number of building blocks, represents themaster equation of a device

composed of two harmonic oscillators [5]. Each oscillator is connected to a thermal bath at temperaturesTc and
Th. The coupling operators are =ˆ ˆS ac c and =ˆ ˆS ah h (see appendix A), being aâ the annihilation operator of the
oscillator coupled to the bathα. A third bath at temperatureTw is coupled to the system through the operator

=ˆ ˆ ˆ†S a aw c h. For simplicity we assume a very large value ofTw, a regime forwhich the heat currents can be easily

calculated. Figure 6(c) shows the heat currents as a function of á ñá ñn nc h , which gives a rough estimation of the
number of states populated and then of the effective graph size, calculated for increasing bath temperatures. In
this expression á ñan is the average number of excitations in the oscillator a = c h, .When the temperature
increases, larger areas of the graph are populated involving a larger number of circuits, which results in an
increment of themagnitude of the heat currents. This example illustrates that given amachinewith the optimal
topology, the rates can always be carefully designed to achieve larger currents without diminishing the
performance.

5. Conclusions

Wehavedetermined the steady state heat currents associatedwith all possible circuits in the graph representing the
master equationofmultilevel continuous absorptionmachines. Each circuit is related to a thermodynamically
consistentmechanism in the device functioning. Although the number of circuitsmaybevery largewhen
increasingly complex graphs are considered, efficient standard algorithms,which scale as +( )N N U2C [47], can be
used for determining them. For example, in the graphs studied inprevious sectionsU increases linearly andNC

quadraticallywith the number of states and the computational cost scales asN3. Themain result of the
decomposition is an equation for the circuit heat currents depending only on the transition rates, without anyprior
knowledge of the steady state populations. This expression allowsus to analyze the two relevant quantities for
refrigerators andheat transformer, themagnitudeof the physical heat currents and the performance.We focus on
devices coupled to three baths, since they canprovide the same currents thanmore complicated setups.

In order to elucidate the roleof the graph topology in the thermodynamic properties,wehave analyzed
machines constructed by afixed set of transition rates. Indevices represented by a single graph circuit, the
performance depends only on the circuit affinities, which canbe tuned to reach the reversible limit, and the
magnitude of theheat currents decreases in generalwith the number of states. Then the simplest graph, a triangle,
leads to the largest heat currents inmost cases and is the proper building block for optimalmultilevelmachines.

When considering generic devices, we have found that the performance of the device cannot exceed the
corresponding to the circuit withmaximumperformance. Besides themagnitude of the heat currents is
described by a topological parameter that increases with the graph connectivity. As a consequence, if the
construction of larger graphs including additional circuits presents a limited connectivity, then themagnitude of
the resulting physical heat currents saturates to a constant value, which is different for different constructions.
We use triangles withfixed energy gaps for transitions assisted by the same bath to construct the graphwith the
largest possible connectivity, denoted by B

4 . This is a planar graph containing neither heat leaks nor ‘counter-
contributing’ circuits.

The assumptionof afixed set of transition rates canbe relaxed.We give the necessary condition to improve the
currentswithoutmodifying the performance.Weprovide an exampleusing a systemofharmonic oscillators. In this
case themagnitude of theheat currents increases almost linearlywith the effective size of the graph, determinedby
the achievable range of temperatures. An interesting question iswhether there are other physical feasible
implementations leading to a faster than linear dependence of the currents on thenumber of states.

The circuit decomposition could be employed in other different scenarios, from the study of heat transport
through quantumwires to the analysis ofmachines designed for complicated tasks involvingmore than three
baths. Besides, our formalism also applies to the case of reservoirs exchanging both energy and particles with the
system, and even to periodically drivenmachines. The only condition required is that the population and
coherence dynamics are decoupled in a certain basis. However, this is not always possible, as for example in
weakly driven systems. Finally, it is worthmentioning that the study of four-strokemany-particle thermal
machines has recently been addressed in [48]; the analysis of their continuous counterparts is another
interesting issuewe can explore in the future by using the circuit decomposition.We expect these findings will
help in the experimental design of absorption devices.

Acknowledgments

We thank LCorrea andARuiz for useful discussions. J OnamGonzález acknowledges a Formación de
ProfesoradoUniveritario (FPU) fellowship from the SpanishMinisterio de Educación, Cultura yDeportes
(MECD). Financial support by the SpanishMinisterio de Economía yCompetitividad (MINECO) (FIS2013-

13

New J. Phys. 19 (2017) 113037 JOGonzález et al



41352-P) and EuropeanCooperation in Science andTechnology (COST)ActionMP1209 is gratefully
acknowledged.

AppendixA. Transition rates for quantum systemsweakly coupledwith thermal baths

In this appendixwe describe how to calculate the transition rates aWij in themaster equation (2) for a quantum

systemwithHamiltonian w= å ñá=
ˆ ∣ ∣H i iS i

N
i1 , and coupledwithR bosonic baths at temperaturesTα.We

assume that the PCD condition holds. The totalHamiltonian reads

å= + +
a

a a
=

ˆ ˆ ( ˆ ˆ ) ( )H H H H , A.1S

R

S
1

,

where aĤ are the bathHamiltonians and the coupling terms are given by

 g= + Äa a a a aˆ ( ˆ ˆ ) ˆ ( )†
H S S B , A.2S,

with aŜ and aB̂ a system and a bath operator respectively. The rates ga determine the time scale of the system
relaxation dynamics. Finally, the systemoperators in the coupling terms are

åå= ñáa
a

= >

ˆ ∣ ∣ ( )S c i j . A.3
i

N

j i
ij

1

Weconsider the following assumptions: the system isweakly coupledwith the environments, ga a k TB , and
g w w-a ¢ ¢ ∣ ∣ij i j , with w w¹ ¢ ¢ij i j and w w w= -ij j i. Then the Born–Markov and the rotatingwave

approximation applies and themaster equation for the populations of the eigenstates of ĤS [2] is given by (2)
with transition rates ( <i j)

g= Ga
a

a
w
a∣ ∣ ( )W c . A.4ij ij

2
ij

The functions Ga only depend on bath operators

ò w rG =w
a

a a a a

¥{ }( ) [ ˆ ( ) ˆ ˆ ] ( )R t t B t Bi2 d exp Tr , A.5
0

where  = -a a a aˆ ( ) ( ˆ ) ˆ ( ˆ )B t H t B H ti iexp exp and râ denotes the bath thermal state.Wewill consider

bosonic baths of physical dimensions dα and coupling operators wµ å +a m m m
a

m
aˆ ( ˆ ˆ )

†
B b b . The summation is

over all the bathmodes of frequencies wm and annhilation operators m̂b .With this choice the rates G w
a
 are [2]



w w w
w

G = +
G = G -

w
a a

w
a

w
a

a-

a( ) [ ( ) ]
( ) ( )

N

k T

1 ,

exp , A.6

d
0

B

with w w= -a
a

-( ) [ ( ) ]N k Texp 1B
1 . The frequency w0 depends on the physical realization of the coupling

with the bath. The condition (3) derives nowdirectly from the conservation of the normalization of the system
densitymatrix. Besides, the Kubo–Martin–Schwinger relation in (A.6) implies (4).

Appendix B.Quantum implementation of the graphs

We introduce here a possible quantumphysical realization of the graphs described in themain text by specifying
theirHamiltonians and coupling operators. Considering bosonic heat baths, the results of appendix A can be
used to obtain the corresponding transition rates. In all cases w w w+ =c w h.

(i) 4.

 w w w w= ñá + ñá + + ¢ ñáˆ [ ∣ ∣ ∣ ∣ ( )∣ ∣] ( )H 2 2 3 3 4 4 , B.1S c h h c

and = ñá + ñáˆ ∣ ∣ ∣ ∣S 1 2 3 4c , = ñáˆ ∣ ∣S 2 3w , = ñá + ñáˆ ∣ ∣ ∣ ∣S 1 3 2 4h . The two-qubitmodel [5] corresponds
to w w¢ =c c.

(ii) cwh
3 .

 w w= ñá + ñáˆ ( ∣ ∣ ∣ ∣) ( )H 2 2 3 3 , B.2S c h

and = ñáˆ ∣ ∣S 1 2c , = ñáˆ ∣ ∣S 2 3w , = ñáˆ ∣ ∣S 1 3h .

14

New J. Phys. 19 (2017) 113037 JOGonzález et al



(iii) wch
3 .

 w w= ñá + ñáˆ ( ∣ ∣ ∣ ∣) ( )H 2 2 3 3 , B.3S w h

and = ñáˆ ∣ ∣S 1 2w , = ñáˆ ∣ ∣S 2 3c , = ñáˆ ∣ ∣S 1 3h .

(iv)  + m3 2 h.

 å w w w= + ñá + + - + ñá
=

+
ˆ ∣ ∣ [( ) ] ∣ ∣ ( )H n n n n n n2 1 2 1 1 2 2 , B.4S

n

m

h h c
1

1h

and = ñáˆ ∣ ∣S 1 2c , = + - ñá +ˆ ∣ ∣S m m3 2 1 3 2w h h , = å ñá +=
+ˆ ∣ ∣S n n 2h n

m
1

2 1h .

(v)  + +n3 3 .

å å w w= + ñá
=

+

=

- ++ +
ˆ [ ] ∣ ∣ ( )H n n n n n n, , , B.5S

n

n

n

n n

h h c c h c h c
0

1

0

1

h c

h

and = å ñá +=
+ˆ ∣ ∣S n n0, 0, 1c n

n
c c0c

,

= å - + ñá + -= + ++ˆ ∣ ∣S n n n n n n, 1 1,w n
n

h h h h0h
, = å ñá +=

+ˆ ∣ ∣S n n, 0 1, 0h n
n

h h0h
.

(vi) B
3 .

 å w w w= + ñá + + - + ñá
=

-
ˆ ∣ ∣ [( ) ] ∣ ∣ ( )

( )
H n n n n n n2 1 2 1 1 2 2 , B.6S

n

N

h h c
1

1 2

and = å - ñá=
-ˆ ∣ ∣( )S n n2 1 2c n

N
1

1 2 , = å ñá +=
-ˆ ∣ ∣( )S n n2 2 1w n

N
1

1 2 , = å - ñá +=
-ˆ ∣ ∣( )S n n2 1 2 1h n

N
1

1 2 .

(vii) B
4 .

å å w w= + ñá
=

-

=

-
ˆ [ ] ∣ ∣ ( )H n n n n n n, , , B.7S

n

N

n

N

h h c c h c h c
0

1

0

1

h c

and

å å

å å

å å

= ñá +

= - + ñá

= ñá +

=

-

=

-

=

-

=

-

=

-

=

-

ˆ ( )∣ ∣

ˆ ( )∣ ∣

ˆ ( )∣ ∣ ( )

S f n n n n n

S g n n n n n n

S f n n n n n

, , 1 ,

, 1, 1 , ,

, 1, , B.8

c
n

N

n

N

c h c h c

w
n

N

n

N

h c h c h c

h
n

N

n

N

h h c h c

0

1

0

2

1

1

0

2

0

2

0

1

h c

h c

h c

with =f g, 1. TheHamiltonian and coupling operators for HO
B are recuperated for an infinity number of

statesN, = +a a( )f n n 1 , and = +( ) ( )g n n n n, 1h c h c .

AppendixC.Hill theory and the steady state heat currents

WeapplyHill theory [35] to obtain (7). The starting point is the steady state probability offinding the system in
the state i [25, 35]

  å=
m

m-

=


( ) ( ) ( )p D , C.1

i
s

N

i
1

1

T

withD given by (8). Introducing the steady state fluxes along a directed edge

= -a a( ) ( )J x W p W p , C.2e j i i
s

i j j
s

e e
e

e e e

e

e

and the corresponding affinities

=
a

a


⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( ) ( )X x k

W p

W p
ln , C.3e

j i i
s

i j j
sB

e e
e

e

e e

e

e
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the total steady state entropy production is given by [22, 25]

å=
=

 ˙ ( ) ( ) ( )S J x X x , C.4
e

U

e e
1

where the orientation of each edge is arbitrary. Introducing the populations in the product between fluxes and
affinities

    å= -
m

a m a m-

Î

    ( ) ( ) ( ) [ ( ) ( )] ( ) ( )J x X x D W W X x , C.5e e
M

j i i i j j e
1

e

e e
e

e e e

e

e

whereåmÎMe
denotes the summation only over themaximal trees for which xe is a chord, since otherwise the

termbetween brackets is zero. The product  a m
( )W j i ie e

e
e
is nomore than the algebraic value of the oriented

subgraph  +
m 

xi ee
, composed of themaximal tree 

m
ie
and its chord


xe. Then the entropy production (C.4) can

bewritten as

    å å= + - -
m

m m-

= Î

    ˙ ( ) [ ( ) ( )] ( ) ( )S D x x X x . C.6
e

U

M
i e j e e

1

1 e

e e

Each termbetween brackets is only related to a circuit oriented in the two possible directions, n


and - n

,

associatedwith  +
m 

xi ee
and  -

m 
xj e

e
respectively.When removing these two cycles from the corresponding

subgraphs, the same forest  n
b
remains, see for example figures C1(a) and (b). Using this result and the

properties of, each term in (C.6) can bewritten as     - -n
b

n n
   ( )[ ( ) ( )] ( )X xe . The number of such

termswith the same forest  n
b
equals the number of edges of the circuit nC , as shown infigure C1(c). Next we

introduce the cycle affinity (10),  = ån nÎ

 ( ) ( )X X xe e with å nÎe the summation over all edges of n


C , to obtain

       å å= - -
n b n

n
b

n n n
-

= Î

   ˙ ( ) ( )[ ( ) ( )] ( ) ( )S D X , C.7
N

1

1

C

whereåb nÎ denotes the summation over all the different forests associatedwith n . This expression can be

further simplified applying thematrix-tree theorem [49],  å = -b n n
b

nÎ


( ) ( ∣ )CWdet . Theflux associated

with each cycle is

     = - - -n n n n
-

  
( ) ( ) ( ∣ )[ ( ) ( )] ( )I D CWdet . C.81

Considering that the cycle affinity andflux are odd functions,  - = -n n
 

( ) ( )X X and  - = -n n
 

( ) ( )I I , we
can definewithout any ambiguity the entropy production in the steady state corresponding to each circuit as

   =n n n
 

˙( ) ( ) ( ) ( )s I X 0, C.9

where the last inequality results from  >-( )D 01 , - >n( ∣ )CWdet 0 and
        - - -n n n n
   

[ ( ) ( )] [ ( ) ( )]ln 0. Since the only contribution to the steady state entropy production
is due tofinite-rate heat transfer effects, we use (C.9) to identify the circuit heat currents (7).

FigureC1. Each termbetween brackets in equation (C.6) is related to two subgraphs, as for example (a)  +
 

x1

1
1 and (b)  -

 
x2

1
1 of

4.When removing the cycles, the same forest, in this case the directed edge fromvertex 4–3, remains. (c) Six different oriented
maximal trees (solid lines).When adding the appropriate chord (dashed lines) the same cycle { }1, 2, 3, 1 is obtained butwith two
different forests.
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AppendixD. Circuit decomposition of the four-statemodel

Herewework out the circuit decomposition of 4. Nowwe only assume < < <E E E E1 2 3 4, the consistency
relation = - = -E E E E E23 24 43 13 12 and the condition (4). The transitionmatrix for the four-statemodel is
given by

=

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( )

W W W

W W W W

W W W W

W W W

W

0

0

, D.1

c h

c w h

h w c

h c

11 12 13

21 22 23 24

31 32 33 34

42 43 44

with diagonal elements = - -W W Wc h
11 21 31, = - - -W W W Wc w h

22 12 32 42, = - - -W W W Wh w c
33 13 23 43

and = - -W W Wh c
44 24 34.

We denote by 


1 the cycle { }1, 2, 3, 1 , see figure 1(d), for which using (5)we obtain  =


( ) Wc c
1 21,

  =


( ) Ww w
1 32, and   =


( ) Wh h

1 13. Then  =


( ) W W Wc w h
1 21 32 13 and  - =


( ) W W Wc w h

1 12 23 31. The cycle affinities

associatedwith each bath (9) are  =


( )X E Tc
c1 21 ,  =


( )X E Tw

w1 32 , and  =


( )X E Th
h1 13 , where

= -E E Eij j i. The contribution of the forests is - = +( ∣ )C W WWdet h c
1 24 34, fromwhich the cycle flux is given

by

 = + --


( ) ( ) ( )( ) ( )I D W W W W W W W W , D.2h c c w h c w h
1 4

1
24 34 21 32 13 12 23 31

where ( )D 4 is determined by using (8). Then the circuit heat currents are  =


˙ ( ) ( )q E Ic 1 12 1 ,  =


˙ ( ) ( )q E Iw 1 23 1

and  =


˙ ( ) ( )q E Ih 1 31 1 . The consistency of the circuit currents with thefirst law   + + =˙ ( ) ˙ ( ) ˙ ( )q q q 0c w h1 1 1

follows from + + =E E E 012 23 31 . The cycle affinity (10) is  = + +


( )X E T E T E Tc w h1 21 32 13 fromwhich
the circuit entropy production can be determinedwith (C.9). A similar procedure can be used in order to obtain
the quantities associatedwith the circuit 2.

For the circuit 3 wedenote by 


3 the cycle { }1, 2, 4, 3, 1 . Now  =


( ) W Wc c c
3 21 34,  =


( ) 1w

3 (there is
not any edge associatedwith thework bath) and   =


( ) W Wh h h

3 42 13,  =


( ) W W W Wc c h h
3 21 34 42 13 and

 - =


( ) W W W Wc c h h
3 12 43 24 31. The cycle affinities associatedwith each bath are  = -


( ) ( )X E E Tc

c3 34 12 ,

 =


( )X 0w
3 and  = -


( ) ( )X E E Th

h3 13 24 . Notice that - = - -( ) ( )E E E E13 24 34 12 .When the transition
energies are equal, =E E34 12 and =E E24 13, all the affinities are zero. The circuit 3 involves all the
graph vertices and therefore there is not any forest associatedwith it. Then -( ∣ )CW 3 is an emptymatrix and

- =( ∣ )CWdet 13 . The cycleflux is given by

 = --


( ) ( ) ( ) ( )I D W W W W W W W W , D.3c c h h c c h h
3 4

1
21 34 42 13 12 43 24 31

and the circuit heat currents by  = -


˙ ( ) ( ) ( )q E E Ic 3 43 21 3 ,  =˙ ( )q 0w 3 and  = -


˙ ( ) ( ) ( )q E E Ih 3 31 42 3 .

Appendix E.Other decompositions of the entropy production

There are several possible decompositions of the steady state entropy production in terms of circuits.
Schnakenberg [25] designed amethod based on the identification of a set of - +U N 1 fundamental circuits.
The circuits are determined by choosing an arbitrarymaximal tree and adding each one of its chords. Taking a
particular orientation for the circuits, a set of fundamental cycles is found. The total steady state entropy
production is then = ån n n=

- +  
˙ ( ) ( )S J x XU N

1
1 , where xν is the chord giving the circuit n and n

( )J x the
corresponding flux. The previous decomposition is simple and specially relevant whenU−N is small.
However, it is not unique, since it depends on the choice of themaximal tree, and some terms in the summay be
not positive definite, which discards a possible consistent thermodynamic interpretation of each circuit
contribution. Besides the evaluation of n

( )J x requires the calculation of the steady state populations.
As an examplewe apply Schnakenbergmethod to the four-statemodel. The procedure requires an arbitrary

set of fundamental circuits of the graph 4.We choose themaximal tree shown infigure 2(a), which has two
chords, { }1, 2 and { }2, 4 . By adding the chord { }1, 2 the circuit 1 is obtained. Choosing an arbitrary

orientation, for example 


1 as infigure 2(d), the directed chord

x1 goes from states 1 to 2. In this decomposition

theflux associatedwith each cycle is taken as the corresponding to the directed chord (C.2),
= -

( )J x W p W pc s c s
1 21 1 12 2 . The cycle affinity is defined by (10) andwas calculated in appendixD,

 = + +


( )X E T E T E Tc w h1 21 32 13 .When adding the chord { }2, 4 we obtain the circuit 2. Choosing the
orientation { }2, 3, 4, 2 , the directed chord


x2 goes from states 4 to 2. Theflux is = -

( )J x W p W ph s h s
2 24 4 42 2

and

the affinity  = + +


( )X E T E T E Tc w h2 43 32 24 . Then the entropy production is
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 = +
   ˙ ( ) ( ) ( ) ( ) ( )S J x X J x X . E.11 1 2 2

The cycles  
 

{ },1 2 are the elements of one of the possible fundamental sets of 4. Notice that for our choice the
circuit 3 is not involved.

A related decomposition is obtained by the algorithmofKalpazidou [29, 30]. For systems showing
dynamical reversibility the algorithm leads to a Schnakenberg decompositionwith a clever choice of the
fundamental set of cycles, such that all the terms in the sumare positive. Therefore a positive entropy production
can be assigned to each cycle, which is required inmany applications [50, 51]. The algorithm is based on
choosing an orientation for the graph such that all thefluxes (C.2) for the directed edges are positive. Next a cycle
is identified and the entropy production  >n n

 
( ) ( )J x X 0min is assigned to it, where n

( )J xmin is the smallest flux

associatedwith an edge of n

. Then n

( )J xmin is subtracted to eachflux in the cycle to obtain a newfluxfield and
the process is repeated for new cycles until a fundamental set is completed [50, 51]. For example, let us assume
parameter values for which the two triangles of the four-statemodel work as refrigerators. Then thefluxes along

x1,

x2,

x3 (from3 to 4),


x4 (from3 to 1) and


x5 (from2 to 3) are positive.With this orientation only the cycles 


1

and 


2 appear in the directed graph and the entropy production can bewritten as (E.1), where the two terms are
guaranteed to be positive. If wemodify the systemparameters such that the circuit 2 works as a heat
transformer but the overall device remainsworking as a refrigerator, the total entropy production can still be
determined using (E.1), but the positivity of each term is not guaranteed.Now the fluxes are positive along the

edges

x1,-


x2,-


x3,

x4 and


x5. Only the cycles 


1 and 


3 remainwith this graph orientation and the algorithmof

Kalpazidou leads to

 = + -
   ˙ ( ) ( ) ( ) ( ) ( )S J x X J x X . E.25 1 2 3

However, in this expression the contribution of eachmechanism, refrigerator (1), heat transformer (2) and
heat leak (3) could not be isolated.

Appendix F. 


( )
N

in the high and low temperature limits

In the high temperature limit, º - »a a a[ ( )]y E k Texp 1B , the transition rates satisfy »a a-W W , leading to

vanishing affinities and heat currents. Now 


( )i

j
is in a good approximation independent of the orientation,

what considerably facilitates the calculations to obtain

  » + +
- ⎡

⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( ) ( )N

r

W

r

W

r

W
, F.1

N c

c

h

h

w

w

1

with = +a ar n m and + + =r r r Nc w h . In this limit 


( )N
decreases quadratically (z = 2)withN, except

when one or two of the terms a ar W aremuch larger than the others and rα remains constant when increasing

N, which can only happens adding two-edge sets. In this limit 


( )N
decreases as -N 1 for small enough values

ofN.
In the low temperature limit, a y 1 and a a- W W . Again this limit implies vanishing heat currents. The

cycle algebraic value is proportional to the small factors yα,  µ a a
+ ¢a a


( ) y

N u u , where uα and ¢au are the
number of a-W transitions before and after the highest-energy state respectively. Besides, the largest

contributions toD comes from two terms that include the lowest number of rates a-W , 
-

( )
h

1

1
and 


( )

h

1 ,

being i=1 the ground state and j=h the highest-energy state. Both terms are proportional toa a
+ ¢a ay f u ,

where fα is the number of aW transitions before the highest-energy state in  


( )N
. Necessarily -a au f is

positive, increases withN and then 


( )N
decreases exponentially when adding new states to the circuit. For

example,  µ  -a a a a


( ) [ ( )]u E k Texp
N

B when =af 0. Examples of these behaviors are given in
figures 4(b) and (e).

AppendixG.Heat currents and spectral radius ofB
3

The simple topological structure of B
3 , see figureG1(a), allows for the direct identification of all the =N 3T

NC

maximal trees. Then

  å å- =n
m n

n m

= = -

+ 
( ∣ ) ( ) ( ) ( )C DWdet . G.1

N

i
i3

1 2 1

2 1T
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Using this result the physical heat currents are given by


 

 
 = +

å å

å å
ºa

m
m

m
m a a

= =
-

+

= =




⎡

⎣
⎢⎢

⎤

⎦
⎥⎥˙ ( )

( )
˙ ˙ ( )K1 , G.2

N
i
N

i

N
i
N

i

cwh cwh1 1
1

2 1

1 1

T C

T

where  K1 2 and = +( )K N N3 2 1C C in the high temperature limit.
For this graph l =n( ) 1

3
and t t= 3b

3 3 . The parameter tb
3 as a function of the number of edges is shown in

figureG1(b). The spectral radius r ( )A , defined as the largest eigenvalue of the adjacencymatrix of the
unweighted graph [52], is also shown. The spectral radius is ameasure of the graph connectivity which increases
monotonically with the number of edges. However, it does not reflect the decrease in the heat currents each time
a pendant edge is added to the graph, see figureG1(c). An increment in the total heat currents is only foundwhen
a new triangle is completed, saturating to a constant valuewhen the addition of new circuits does not improve
significantly the graph connectivity. This behavior is well described by tb

3.
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