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Abstract

The steady state heat currents of continuous absorption machines can be decomposed into
thermodynamically consistent contributions, each of them associated with a circuit in the

graph representing the master equation of the thermal device. We employ this tool to study the
functioning of absorption refrigerators and heat transformers with an increasing number of active
levels. Interestingly, such an analysis is independent of the particular physical implementation
(classical or quantum) of the device. We provide new insights into the understanding of scaling up
thermal devices concerning both the performance and the magnitude of the heat currents. Indeed, it is
shown that the performance of a multilevel machine is smaller or equal than the corresponding to the
largest circuit contribution. Besides, the magnitude of the heat currents is well-described by a purely
topological parameter which in general increases with the connectivity of the graph. Therefore, we
conclude that for a fixed number of levels, the best of all different constructions of absorption
machines is the one whose associated graph is as connected as possible, with the condition that the
performance of all the contributing circuits is equal.

1. Introduction

Continuous quantum absorption machines [ 1] are multilevel systems connected to several thermal baths at
different temperatures. Their autonomous functioning can be rigorously described by using the theory of open
quantum systems [2]. Some basic models such as the three-level [3, 4], the two-qubit [5] and the three-qubit

[4, 6] absorption refrigerators have been widely employed in establishing fundamental relations in quantum
thermodynamics [7]. Besides, several experimental proposals have been put forward, for example those based on
nano-mechanical oscillators or atoms interacting with optical resonators [8, 9], atoms interacting with
nonequilibrium electromagnetic fields [ 10], superconducting quantum interference devices [11, 12], and
quantum dots [13]. Further, an experimental realization of a quantum absorption refrigerator has been recently
reported [14].

The dynamics of quantum machines is described by a master equation when the coupling with the baths is
weak enough. Along this paper we consider in addition systems for which two states with the same energy cannot
be connected to a third one through the same bath. This assumption greatly simplifies the quantum master
equation as the population and coherence dynamics are decoupled in the system energy eigenbasis [2], and will
be referred in the following as the PCD condition. It guarantees the thermodynamic consistency of the models
[15, 16], which may be broken when some uncontrolled approximations are introduced [17]. Under this
assumption coherences decay with time and are irrelevant in the steady state functioning of the device, contrary,
for example, to externally driven devices [18] and systems including matter currents [19], where they may play
an important role on the thermodynamic properties. When the PCD condition holds, the populations follow a
continuous time Markov master equation [20], given in terms of the rates for the transitions between states,
which are always allowed in both directions. In this case a thermal device implemented in a quantum system can
be described within the framework of stochastic thermodynamics [21-23].

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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The analysis of the thermodynamic quantities can be realized at different levels of description [24]. From a
macroscopic point of view, where the relevant quantities are the bath temperatures and the physical (total) heat
currents, to a microscopic description that considers in addition the device structure. This latter perspective is
more and more relevant as the advance of the experimental techniques allows for the design and the
manipulation of the device. A prominent tool for this microscopic analysis is graph theory, where the stochastic
master equation for the populations is represented by a graph. Schnakenberg theory [25] is a popular approach
that gives a decomposition of the total entropy production based on a set of fundamental circuits in the graph.
Basically, Schnakenberg applies Kirchhoff’s current laws to reduce the number of terms appearing in the entropy
production, which may be highly beneficial for optimization procedures. It has been used for example in linear
irreversible thermodynamics [26] and in the study of steady-state fluctuation theorems [27, 28]. This method
does not intend to associate an entropy production with each circuit. In particular, the attempt to interpret
individually each term in the decomposition may lead to apparent negative entropy productions, although this
problem can be avoided by a convenient choice of the fundamental circuits [29-31]. However, it has been shown
that the diagnosis of the machine performance greatly benefits from considering the thermodynamic analysis of
not only the fundamental but all the possible circuits in the graph [32—34]. A convenient approach is then Hill
theory[35]. Schnakenberg and Hill theory assign the same affinity to each circuit, but the latter considers all the
possible circuits and leads to thermodynamically consistent entropy productions. Both methods coincide when
the fundamental set of circuits contains all the possible ones.

In this paper we use Hill theory to fully characterize the two relevant quantities in the study of continuous
absorption devices: the steady state heat currents and performance. Our aim is to find out under what conditions
these quantities are as large as possible, i.e. what is the best construction of multilevel machines. Graph theory
allows us to answer this key question from a very general perspective, looking only at the topological structure of
the graph. Although we are motivated by the study of quantum models and in the following we will assume the
PCD condition, our analysis also applies to classical stochastic models, including mesoscopic systems where the
relevant degrees of freedom are identified by a coarse graining procedure [36, 37]. In fact, the main advantage of
this approach is that many properties of a device can be inferred from its graph representation irrespectively of
its underlying, microscopic or mesoscopic, quantum or classical, realization.

It has been shown that systems with degenerate energy levels and driven by an external field may present a
linear increment of the heat currents with the number of states [38, 39]. Furthermore, two-stroke models in the
quasi-equilibrium regime show an improvement in the performance with the number of levels [40]. However,
using a particular construction of continuous absorption devices by merging three-level systems, Correa [41]
found no changes in the performance and a fast saturation in the magnitude of the heat currents as the number
oflevels increases. Thus the question arises whether this limitation may be overcome by different designs of the
absorption device.

We are interested in continuous machines that either extract energy from the coldest bath (refrigerators) or
inject energy to the hottest bath (heat transformers). We do not consider devices designed for complicated tasks
involving more than one target bath, although our procedure could also be applied to such systems. The best
refrigerators and heat transformers should generally provide the largest possible heat currents and be also able of
reaching the reversible limit for a particular set of the parameters. In order to identify them, we first justify thata
machine coupled to three baths is capable of achieving the same currents than more complicated devices which
consider additional heat reservoirs. As multilevel machines are composed by multiple circuits, our next step is to
identify the optimal circuit to be used as building block. In general the magnitude of the heat currents increases
with the transitions rates for any circuit. Hence, to elucidate the role of the circuit structure in the currents we set
the rates to fixed values. Moreover, this condition avoids processes which prevents the machine from reaching
the reversible limit when considering multiple circuits. The following step is to determine the graph structure
leading to the largest heat currents considering optimal blocks. Finally, we relax the condition of fixed rates to
improve the scaling of the currents with the number of levels without introducing harmful processes as heat
leaks.

The paper is organized as follows: in section 2 we motivate the generic nature of our work by describing two
different models of absorption devices which are represented by the same four-state graph. The master equation
for all the quantum models used as illustration of the general results can be obtained using appendix A with the
Hamiltonians provided in appendix B. We also introduce in section 2 the essential concepts of graph theory
needed to characterize the heat currents associated with a circuit inside a general graph. This result allows us to
relate each circuit to a thermodynamic mechanism and classify it attending to its contribution to the overall
functioning of a device coupled to three baths. Although we have used previously the circuit decomposition in a
different context, the analysis of the irreversible mechanisms arising in thermal devices indirectly connected to
environments [34], we provide now a derivation of it using Hill theory in appendix C. The differences between
Hill and Schnakenberg decompositions are discussed and worked out for the four-state graph in appendices D
and E. In section 3 we analyze multilevel machines represented by a graph circuit. Explicit expressions for the
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Figure 1. Schematic representation of (a) a two-qubit device and (b) a photoelectric device. (c) The same graph, G,, represents the
master equation associated with each one. Three circuits can be indentified: (d) C, (e) C, and (f) C;.

scaling of the heat currents with the number of levels in the high and low temperature limits are provided in
appendix F. Machines represented by graphs with multiple circuits are studied in section 4. A simple example to
illustrate the relation between the heat currents and the graph connectivity is presented in appendix G. We draw
our conclusions in section 5.

2. Motivation and background

We will motivate our approach by first considering two different models of absorption devices, both connected
to three reservoirs at temperatures T, (cold), T}, (hot) and T, (referred in the following as the temperature of the
work bath, in analogy with devices driven by an external field), with 7. < Tj, < T,,. Depending on internal
parameters, the devices can either work as heat transformers, transferring energy from the hot to the work bath,
or as refrigerators, extracting energy from the cold bath assisted by the work bath. The first model is the two-
qubit device [5] shown in figure 1(a). Each qubit is connected to a bosonic heat bath at temperatures T.and T,.
The interaction between them is mediated by another bath at temperature T,,. The state of this machine can be
expanded in the product state basis [1) = ]0,0,),[2) = |0,1),|3) = [1,0.) and |[4) = |1;,1.), with energies

E =0, E; = 7w, E3 = /wypand Ey = 7 (w. + wy). When the system is weakly coupled to the reservoirs, the
dynamics of the populations is described by a master equation

d 4
20 = ZI(W& + W+ WhHp), )
p

where p, are the populations, Wji' > 0 the transition rates associated with the coupling with the bath o, and
Wii = =32, Wj;. For our purpose now is only important that the non-zero rates associated with the cold bath
correspond to transitions 1 <+ 2,3 < 4, withthehotbathtol < 3,2 < 4,and with theworkbathto 2 < 3.
The second model is a photoelectric device [32, 42—44] composed of two single-level, spinless quantum dots
with energies E. and Ej, that can be both occupied at the same time. Each dot is connected to a metal electrode
with chemical potential i < E. < Ej, and temperatures T,.and T}, see figure 1(b). We choose the same chemical
potential in order to avoid introducing mechanical work and assume that neither the temperatures nor the
chemical potential are modified by the interchange of electrons through the quantum dots. The system states are
1 = 04,0,2 = 041, 3 = 1,0,and 4 = 1,1, with energies E; = 0, E, = E,, E; = Ejand E, = E, + Ej, where
now 0, and 1, are the number of electrons in the dot a.. Transitions between the two dots are supported by an
additional radiation source (for example the Sun in photovoltaic models [32, 44]) at an effective temperature T,
Considering a weak coupling with the electrodes and a negligible line broadening of the energy levels, the device
dynamics can be described by an stochastic master equation [45] in the form (1), but with transition rates
determined by the particularities of the physical model under consideration. In the case of the absorption device
with bosonic baths the rates are proportional to Planck distributions, while for the photoelectric device they are
proportional to Fermi functions.
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The relevant point for our analysis is that since the master equations have the same structure, the devices
share several thermodynamic properties that stem directly from it. The different physics involved in each case is
only reflected in the particular values of the transition rates. The master equation may be represented by a
network, a weighted and labeled multi-digraph. However, as transition between states are always allowed in both
directions, we will use a simpler representation consisting in a labeled graph, with vertices associated with the
system states and undirected edges with the transitions [25, 35]. When necessary, an arbitrary orientation can be
assigned to the graph and a weight to each edge, given by the corresponding transition rate. For example, the
representation of (1), denoted in the following by G, is shown in figure 1(c). The circuits of G, defined as a cyclic
sequence of distinct edges, are displayed in figures 1(d)—(f). Circuits C; and C, participate in different processes
depending on their two possible orientations, referred as cycles. For example the cycle G = {1, 2, 3, 1} absorbs
energy from the cold and work baths that is rejected to the hot bath, whereas the opposite cycle
—C = {1, 3, 2, 1} absorbs energy from the hot bath and rejects it to the cold and work baths. In both processes
there is a net exchange of energy with the three baths.

The circuit C; involves only two baths (cold and hot) and in our models does not lead to any net exchange of
energy. This is a consequence of having the same energy gap for transitions assisted by the same bath. However,
in more general setups with different transition energies, Es4 = Ej; + Aand Eyy = Ej3 + Awith
Ej; = E; — Ej, thereis aheatleak which increases with the energy shift A [33].

The overall physical heat currents Q,, and the performance of the device are then the result of the interplay of
the different mechanisms related to each circuit. In spite of the simplicity of the previous qualitative
interpretation, the microscopic currents 4, (C,) corresponding to each circuit in the graph are not
straightforwardly obtained from the physical currents. We introduce below the concepts of graph theory needed
to characterize them.

2.1. Graph, circuits and steady state heat currents

For simplicity we consider systems with N states of energies E;, 1 < i < N, represented by a connected

graph and coupled with thermal baths. The generalization for systems exchanging particles without involving
any mechanical work, as the absorption device of figure 1(b), is straightforward. The system transitions may be
coupled to one or several independent heat baths, each one in equilibrium at temperature T,,, 1 < « < R.The
system evolution is described by a master equation

d N R
api(t) = Z Z Wij p]-(t), )

j=la=1

where p; is the normalized probability distribution to be in the state i, W' > 01is the transition rate from the
state j to the state i due to the coupling with the bath a, and

j=i

The transition matrix W, with elements W; = YR Wi, is singular, which guarantees the existence of anon-

trivial steady state solution of (2) and the conservation of the normalization. In addition, we assume that

W](f Eji
= exp , (4)
Wl? kB Zt

where kg is the Boltzmann constant. If the transition rates W for j > i are known, the remaining rates can be
determined by using (3) and (4).

The master equation (2) is represented by a graph G(N, U) composed of N vertices and U undirected edges.
Let x, be an edge in the graph, 1 < e < U.In the following X, will denote an edge oriented from vertex i, to j,,
whereas —X, connects j, to i,, in both cases due to the coupling with the bath «,. Oriented edges are related to
rate coefficients by W (¥,) = W]i“;e and W (-X,) = Wf']i . An algebraic value .4 may be assigned to any oriented

subgraph és of G, composed of s < U oriented edges X, [25],

R
A(gs) = H -Aa’(gs)) %)
a=1
where, if the subgraph involves edges associated with the bath «,
A@G) = [ W&o, ©)
eEs,a

with [ L., . the product over all the directed edges of A corresponding to this bath, and otherwise AG) = L.
Both A(és) and A“(és) are positive real numbers. A maximal tree 7#,1 < p < Nr,isasubgraphof G
containing N — 1 edges without forming any closed path. The oriented subgraph 7 7 is a maximal tree in which

4



I0OP Publishing NewJ. Phys. 19 (2017) 113037 J O Gonzélez etal

@, ® ®@ @

@ (L) © G @©

Figure 2. (a) A maximal tree 7' of G, oriented towards the vertex 1 is denoted by ’j’i (b) When adding the chord x; (dashed line) to
T, the circuit C is obtained. (c) Removing the circuit (dashed line) and orienting the remaining edges towards it, the forest F i is
found. The cycles C; and —C; are shown in (d) and (e).

all the edges are directed towards the vertex i. A chord of a maximal tree is one of the U — N + 1edges thatare
not part of it. The subgraph obtained when a chord is added to a maximal tree has onlyacircuit C,, 1 < v < Nc.
When removing the circuit from the previous subgraph, a collection of edges remains. Orienting them towards
the circuit, a forest F f is found. The index Sindicates that for a given circuit different forests can be found,
resulting from different maximal tress. The number of maximal trees (N7), circuits (N¢) and forests depend on
the topological structure of the graph G. Each circuit C, may be oriented in one of the two possible directions,
leading to the cycles C,and —C,.Some examples are shown in figure 2. In appendix C we use Hill theory to show
that the steady state heat current associated with a circuit is given by

4,(C) = —T,D(G) "det(—WIC)[A(C,) — A(—C.)1X*(C,). 7

The factor Dis calculated using

D(9) = Z Z AT} = | det(W)). ®)

i=1p=1

The quantity D(G) > 0 increases with the complexity (both the number of vertices and edges). It is a factor
which reduces the population in a circuit and therefore the corresponding heat currents when considering
machines with an increasing number of them. The matrix W is obtained from the transition matrix W by
replacing the elements of an arbitrary row by ones, whereas the matrix (—W/|C,) is obtained by removing from
—W all the rows and columns corresponding to the vertices of the circuit. Indeed, det(—W/|C,) is the sum of the
forests of C, and can be thought of as an ‘injection of population’ through edges not belonging to it.

We have also introduced the cycle affinity associated with the bath «,

5 A C,)
XC,) = kgln| ——=—|, 9
’ (A@(—C»)
and then the total cycle affinity is
5 R A@,) ]
X)) = X*(C) =k hl(—f. . (10)
a;l ’ A(_Cu)

The quantity — T, X (C,) is just the net amount of energy interchanged between the bath « and the system
when performing the cycle C,. Notice that X® (—(_f,,) = —-X° ((_f,,) and hence each cycle is related to a process
where some energy is either absorbed from or rejected to the bath. The circuit heat current (7) can be viewed as
the result of the competition between the two cycles, described by — T, [.A(é,,) — A(— éy)] X« (8,,), weighted by
how the circuit is immersed in the graph, which is contained in D(G)~! det(—W|C,).

Asa consequence of (4)

R
3 T.Xx(C,) =0, (11)

a=1

reflecting that the net energy exchanged by the system with the baths along a complete cycle is zero. Using it the
following relation is found,

R
> 4,(C) =0, (12)

a=1

and since the only contribution to the steady state entropy production is due to finite-rate heat transfer effects,
the circuit entropy production is
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R .
HOEEDY q“;c”) >0, (13)

a=1

where the inequality is shown in appendix C. These two last equations assure the consistency of the circuit heat
currents and the entropy production with the first and second laws of thermodynamics. Finally, the total entropy
productionis given by S = ngl $(C,) and the physical heat currents by Q,, = Z,I,\ril 4,(C,). They canbe
directly obtained from the transition rates by using (7), without determining the steady state populations. As an
illustration of the circuit decomposition, the heat currents for the graph G, are worked out in appendix D. Let us
remind that other decompositions of S are possible and we briefly discuss them in appendix E.

The circuit heat currents (7) are homogeneous functions of degree 1 with respect to the transition rates, that
is

Wi —oWi  4,(C) — 04, Qn — 0Qa, (14)

with 0 > 0. Therefore, the currents can be always modified by changing the rates, provided that the assumptions
to obtain the master equation remain valid. This property emphasizes the importance of the graph topology.

2.2. Classification of circuits
The contribution of each circuit C, to the physical heat currents can be classified attending to their non-zero
affinities X*:

i X« ((_i',,) = 0 for all the baths. These circuits will be referred as trivial circuits, as they do not contribute
neither to the steady state heat currents nor to the entropy production.

(if) Condition (11) prevents any circuit from having only a non-zero affinity X.

(i) Xx@ (@V) = 0 only for two baths, o = o, a,. Then there is only a net energy transfer between them,
although other baths could participate in the cycle. Using (12) and (13), the following condition is found

1 1
o T;lz T(,Y]

Taking T;,, < T,,,, the heat currents verify 4o, (C,) > 0and G, (C,) < 0.Therefore the net heat current

associated with these circuits always flows from the higher temperature bath to the lower temperature one.

In the context of refrigerators and heat transformers these circuits are related to heat leaks that decrease the

performance [33, 34].

>iv) X« ((_f',,) = 0 for three baths, @ = oy, ay, as. They will be referred as three-bath circuits in the following.
Equation (11) implies that, given a circuit orientation, two of the affinities and their corresponding heat
currents must have the same sign. Considering sgn(X®) = sgn(X*2) = —sgn(X) and using again (12)
and (13), we obtain

1 1 1 1
T CH)l— - —1|+4qg. CH)— — —1]=0. 16
4, ( )( i Tm) G, ( )(T T) (16)

The formalism applies also to circuits with non-zero affinities associated with more than three baths, but
they are not relevant for our analysis.

2.3. Circuits in refrigerators and heat transformers
For simplicity we discuss now refrigerators, but the results are also valid for heat transformers. In general, the
environment may be composed by the target coldest bath, a collection of sink baths with temperatures { 7, ;}
(where the surplus energy is rejected) and work baths with temperatures { T, ;} (supplying energy to complete
the cycles). Let { X®} be the affinities of a particular circuit. Equation (7) implies that we can always find a hot
and a work bath with temperatures and affinities given by T, X* = 3, T, . X® (o = h, w), such that tuning
their rate values (14) we obtain the same or larger heat currents than in the original system. Therefore we focus in
the following on circuits and thermal machines coupled to three thermal baths with temperatures I, < Tj, < T,,.
In the construction of the device we do not consider circuits with two edges associated with different baths
connecting the same vertices, as it would lead directly to heat leaks (iii). To perform useful tasks we must include
three-bath circuits (iv), which can be classified as:

(@ ay = hand o, = w, whichleadsto 4,(C,), 4,,(C,) > 0and 4.(C,) < 0.

6
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(b) ay = cand o, = h, givingnow 4,.(C,), 4,(C,) < 0and 4,(C,) > 0.
(¢) a; = cand a, = w, for which

sgn[X°(C,)] = sgn[X"(C,)] = —sgn[X"(C))). (17)

In cases (a) and (b) heat is simply transferred from the work to the cold bath, whereas the hot bath absorbs or
gives up some energy. In (c) two different directions for the heat currents are possible: 4.(C,), 4,,(C,) < 0,
q,(C,) > 0and 4.(C,), 4,(C,) > 0, q,(C,) < 0,which correspond to the conditions for the heat currents in
heat transformers and refrigerators respectively. Therefore equation (17) settles the condition for the affinities in
useful circuits. The particular working mode will depend on the system parameters.

3. Thermal machines represented by a circuit graph

In this section we analyze thermal machines that are represented by a circuit graph, G = CV,with N > 3 states
(vertices) and U = Nundirected edges. We consider useful three-bath circuits for which (17) holds. Along this
section we shall make explicit the circuit length (the number of states or edges) by the superscript N. In this case

the physical and circuit heat currents coincide. From (10) we obtain A(—(_f N) = A(E N) exp[—X (6’ N) / kg], and
then the physical heat currents are given by

O, =q,(C) = —T,REC™M{1 — exp[-X (™) /ks]} X C ™), (18)

where
RCN = DN AC™). (19)

. . o o SN
Notice that the dependence on the arrangement of the edges in the circuit is contained in R(C ) and the
. SN . o o .
currents vanish for X (C ') = 0. Using (11), the circuit affinity is rewritten as

x@Y=[1 - Llxe@™ + [1 - Llxne ™, (20)
T, T,
The device operating mode depends only on the parameter x = —(7.X¢) /(T;X"), 0 < x < 1, whichis
independent of the particular circuit orientation, and for X @ N) = Oresultsin

_ L(T, — Ti)

X, = . (21
" T, - T)
When x < x,, the device operates as an absorption refrigerator whose coefficient of performance is
S (22)
Qw I —x

The coefficient of performance reaches the Carnot value ec = T.(T,, — T;,) /[T,,(T;, — T.)] when x approaches

o 5N .
to x, from below but at vanishing heat currents (X (C ') = 0). When x > x,, the machine operates as a heat
transformer with efficiency

R (23)
Q
reaching the Carnotvalue n. = T,, (T, — 1) /[T;(T,, — 1.)] when x approaches to x, from above. In
consequence, the device performance depends only on the circuit affinities X © N), irrespective of the value

R(C N), and they may be suitably tuned to reach the reversible limit for any graph circuit.

3.1. Circuit structure, performance and heat currents

In the following and without loss of generality, we choose a circuit orientation such that X @ N) > 0.The
affinities and the algebraic value A N) depend only on the number of edges and their associated transitions
rates. In particular, AC N) is the product of N transition rates. However, the factor D depends also on the
arrangement of the edges through the oriented maximal trees in (8). The Nt = N maximal trees are obtained by
removing in each case one of the edges in the circuit. We denote by 77 the maximal tree obtained by removing
the edge starting in the state j. The term D (CN) is the sum of N° terms A(’ff), each one composed of the product
of N — 1transition rates.
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Figure 3. (a) The state i in a circuitis connected to i — 1and i + 1 by the same bath. The PCD condition (E;_; = E;;) requires

Ei_ 1 < E; < Eiyyor E;_; > E; > E; . Then, for a given circuit orientation, a path from i — 1to i 4 1 consists in two jumps either
absorbing energy from or rejecting energy to the bath. In both cases the transition rate W, is the same. (b) When considering more
general graphs, the PCD condition implies that the maximum number of edges connecting a state is six in a machine connected to
three baths.

3.1.1. Dependence on the transition rates
From the previous results for A and D and after a straightforward calculation, the heat currents are bounded by

104l < TaWuX2@C ™M, (24)

where W,,, is the minimum rate in A(C N). As intuitively expected, increasing the lowest rates may result in
larger heat currents for any circuit. The remaining question is then what kind of circuit shows the largest heat
currents for a set of fixed transition rates. In order to answer it, we assume in the following that the available
resource in the machine design is a set of three undirected edges with fixed transitions rates, W, and W_,
associated the first with energy transfer to and the second with energy absorption from the bath &« = ¢, w, h.
This construction can always overcome complicated ones with more that three edges using a proper scaling of
the rates, see (14). Besides, it implies fixed energy gaps |Ejj| = E,, for transitions assisted by the same bath and:

(i) When two edges, x;_; and x;, connecting the state i are associated with the same bath, then
W (X;_1) = W (X;) for any of the two cycles as a consequence of the PCD condition, see figure 3(a).

(ii) The minimum number of edges required to construct a useful three-bath circuit is three, therefore
E. + E,, = Ejasaresultof (11) and (17). For simplicity we take E, = E,,.

Considering these points, any circuit must be constructed adding either two-edge sets { aux }, with
« = ¢, w, h,or three-edge sets { cwh} to guarantee that the change of energy of the system in a complete cycle is
zero. We denoteby m = m, + m,, + my, the number of two-edge sets in a circuit. Each one of them contributes
with the product W_, W, to the algebraic value A(a N), independently of the circuit orientation. Circuits
constructed only by adding two-edge sets (N = 2#m) are trivial circuits, X (C 2m) = 0.Then = n, + n_ three-
edge sets {cwh} in a circuit contribute either with the product W_.W_,,Wj, (sets n..) or W, W,, W_, (sets n_) to

AC N). Notice that when changing the circuit orientation to -C, n, and n_ are interchanged. The smallest
useful circuit is a triangle denoted by C3, see for example figures 1(d) and (e). Large circuits CN with

N = 3n + 2m states are obtained adding additional two and three-edges sets to C>. Their smallest instances are
shown in figures 4(a) and (d).

— N
3.1.2. Circuit affinitiesand R(C )

The circuit affinities are given by X © N) =(ny —n)X® (© 3) for a proper choice of the cycles. Both CN and
C? have the same value of the parameter x, provided that 7, — n_ = 0, and then the performance of the circuit
CN, given by (22) or (23), is necessarily equal to the performance of C2. In other words, for a fixed set of transition
rates the circuit performance is independent of the number of edges.

The remaining question is whether larger circuits result in an increment of the magnitude of the heat

currents with respect to C3. As X (C N) increases at most linearly with N, the term depending on the affinities in
(18) increases at most as N%, but only when NX (é 3) / kg remains small. However, the increment of the affinities
with the number of states is compensated by the factor R(C N). As the number of terms in D grows quadratically
with N, one would expect that in most cases R(C N) decreases when adding new states and edges to the circuit. In

. . g . . 5N
fact, numerical evidence indicates that when adding two and three-edge sets to a circuit, R(C ) decreases equal
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/20
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Figure 4. Circuits (a) C>*2"h for my, = 1 and (d) C3+3"+ for n, = 1. The triangle (1, = 0)is denoted by C2,,. The factor R(C N) and
the heat currents (both normalized to the triangle values) as functions of the number of states N are shown in (b) and (c) for C3+2"; (e)
and (f) for C3+3™+, The dashed lines follow a dependence N~ The calculations are performed using quantum systems described by
the Hamiltonians and coupling operators given in appendix B. The bath temperatures are parameterized by ¢, with t = 0.3 (circles),

t = 1(squares) and t = 6000 (triangles) corresponding to low, intermediate and high temperatures. The transition rates W, , are
calculated using (A.4) and (A.5) with d, = 3,7, = v, = v, wi = 7, w. = 0.5, T, = 4t, Tj, = 5t and T,, = 6t, in units for which

/2 = kg = wy = 1. Thelines are merely eye guides.

or faster than N~%, with z > 1 for large enough N, see for example figures 4(b) and (e). Notice that we do not

claim that R(Z? N/) < R((_f N) for arbitrary values of Nand N’ subjected to the condition N’ > N.Our
statement only applies to the construction where the circuit C V' is obtained by adding two-edge and three-edge
sets to C3, while keeping the edges and the orientation of the latter. Explicit expressions for R(C N) in the high
and low temperature limits supporting this result are given in appendix F.

We have shown that typically the affinity term in (18) depends linearly on N whereas R(C N) decreases faster
than N~1, and therefore in most cases the heat currents will decrease when adding additional edges to C?, see
figures 4(c) and (f). An increment in the heat currents may be obtained at some extent by adding some three-
edge sets when z < 2 while the circuit affinity remains small enough to grow quadratically with the number of
states, as shown in figure 4(f) for intermediate temperatures. This improvement, although modest, may be
relevant in situations where the heat currents are intrinsically small. Intuitively, increasing the circuit size
implies the addition of states with larger energies and small populations except for specific values of the
parameters. This small population makes harder closing the cycles and then effectively reduces the heat currents.
Thus, the triangle C? is in general the optimal choice as building block for multilevel devices.

3.2. The triangle C*
There are only two possible configurations of the triangle C* compatible with condition (17): C2,,,, shown in

figure 1(d), and C:,,, where the cold and work edges are interchanged. This machine is one of the reference

models used in quantum thermodynamics and it has been studied in both the cwh [1, 3, 4] and wch [23]

configurations. Since X ((_fiwh) = X(C jch) for a proper orientation, the circuits show the same thermodynamic
=3 =3

performance. Notice that A(C,,,) = A(C,) but D(C,,) = D(C: ). Using (18), the heat currents are related

by

= weh 3
ga - — D(C:(;Wh) . (25)
O D(Chp)
For high temperatures, y, = exp[—E,/(ksT,)] ~ 1, thearrangement of the edges in the circuit is irrelevant and

Q,th / Q;Wh ~ 1. A different picture appears at low temperatures, y < 1,

-y weh
)" WW, + WW,
Qi:l/h ‘/V;Ww + WwWh

(26)
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= wch

. yowh syweh [ - ewh
For W, < W, theratio Q, /Q;W < landfor W. > W,, QZC /QZW > 1. Then the most favorable
configuration corresponds to the lowest transition rate being associated with transitions from the ground state,
by far the most populated in the low temperature limit.

4. Thermal machines represented by a graph with multiple circuits

We study now multilevel absorption machines with multiple circuits. We start by analyzing the relation between
the heat currents and the performance of a circuit C, in an arbitrary graph G, and the corresponding quantities
for the (isolated) graph circuit C;;°. To this end, we rewrite (7) as

4,(C,) = D(G) ' det(—W|C,) D(CE)q,, (CE). (27)

Using this expression we find:

() 14, (C)| < 14, (CE).
(i) £(C.) = 4,(C) /4, (C,) = £(C5)and n(C,) = —4,,(C,)/4,(C.) = n(CE).

The first result indicates that the magnitude of the heat currents associated with a circuit in a graph is always
smaller than the one corresponding to the isolated circuit. It follows from (8) by noticing that the product
between a term in the forest det(—W]|C,) and a term of D(C;°) gives the algebraic value of one of the oriented

maximal trees of G. Therefore det(—W/|C,)D(C*°) = Zgi lzi@A(’j'f), with >, the summation over all the
vertices of C,, and being the number of maximal trees involved N; < Nr. The second result derives directly from
(22) and (23) and indicates that the circuit performance is not modified when the circuit is included in an
arbitrary graph.

4.1. General bound for the performance

A consequence of (ii) is that the device performance cannot exceed the corresponding to the circuit with the best
performance. For example, let us consider a device working as an absorption refrigerator, Q. and Q,, > 0. The
coefficient of performance is given by

Nt s N .
e = z ME(C,,) _ Z M, (28)
v=1 w 1/:N(';+1 QW

where g, (C,) is positive for the N/: circuits contributing to the cooling cycle, and negative for the N2 — N¢.
‘counter-contributing’ circuits, corresponding for example to heat leaks and circuits with finite counter-
currents which flow in directions against the operation mode [33, 34]. The No — N/ trivial circuits are irrelevant
in this discussion. In consequence, denoting by € (C, ) max the largest performance of a circuit in the graph,

€ < e(Ch)max> (29)

and the equality, £ = £(C,)max. is reached when N — N/ = 0and £(C,) = €(C,)max for all the circuits. In
particular, € = £¢ onlyifall of them achieve the Carnot performance for the same value of the affinity. A similar
analysis applies to the device working as a heat transformer. Therefore, with regard to the performance, optimal
multilevel machines are represented by graphs without ‘counter-contributing’ circuits. We will impose this
condition in the design of the optimal graph.

4.2. Graph topology and heat currents

The magnitude of the physical heat currents is determined by the graph topology and the value of the transition
rates. We first explore the graph topology of an arbitrary graph with the only restriction that two vertices can be
connected by just one edge (see section 2.3).

In general Q, = Zf’gl 4, (C,) increases with the number of positive contributing circuits N/ < N, which
operate in the same way as the entire device. However, this increment may be hindered by the unavoidable
decreasein D(G)~! det(—W/|C,) when adding new states and edges to a graph. The factor D is the sum of NNt
terms. For circuits of length L, det(—W|CL) is the sum of det(X|C£) terms. In this expression the submatrix
(K|C£) is obtained by removing from A all the rows and columns corresponding to the vertices of the circuit CZ.
The matrix A is calculated by replacing the diagonal elements a;; of the adjacency matrix A (see for example
[46]) by the vertex degree of the corresponding state i. The non diagonal elements are a;; = 1 when states iand j
are connected by an edge, and a; =0 otherwise. Therefore, when attending to the number of terms, the
magnitude of the heat currents resulting from the positive contributions of N; < N¢. circuits of length L is
related to the topological parameter

10



10P Publishing

NewJ. Phys. 19 (2017) 113037 J O Gonzélez etal

1.4F ]
(b)
120 -
1of -
=™
o8l -
ey 3
3 €3) 63
S\ S\
2 ) )
N S
| @l @)
S N Te
{0 20 &

Q./Q

Figure 5. (a) Graph G2, States are labeled by the pair (1, 1), being the state energy 1. E. + m,Ej.. (b) 74 as a function of the number of

states for G2 (triangles), G5 (squares) and GZ (circles). (c) Heat currents (normalized to Qo™ for two temperature regimes given by
t = 0.07 (empty symbols) and t = 1 (solid symbols) where T, = 5¢, T;, = 6f and T,, = 7t. The remaning parametersare d, = 1,
Y=Yy = Y Wh = 1, w, = 0.5,inunits for which /2 = kg = wy = L. The calculations are performed for quantum systems
described in appendix B. The lines are merely eye guides.

SACH <) = % (30)

where \(Ch) = det(X|C£) / N, with N;' < A(CH < 1. The ratio A may depend on the position of the circuit in
the graph and in general A(C 5) < A(CEywhen L' > L. Although 7; can be readily calculated, we found that the
upper bound 7¢ incorporates the relevant information about the graph topology. In particular, it makes clear
the relevance of the graph connectivity: favorable graphs consist in as many small positive contributing circuits
as possible (thatis, avoiding heat leaks and another negative contributions), built with the smallest possible
number of states, implying a large graph connectivity. This dependence on the graph topology is weighted by the
transition rates. For high temperatures all circuits participate in the heat currents. However, only small circuits
including the ground state will contribute significantly in the low temperature regime, independently of the total
number of circuits in the graph.

4.2.1. Graphs constructed by merging triangles

The optimal choice for the building block is the triangle, the smallest possible contributing circuit as described
before. We consider that all the triangles have fixed energy gaps for transitions assisted by the same bath. Thisisa
necessary condition to achieve the maximal possible connectivity because otherwise adjacent triangles cannot
share any edge. In order to analyze the dependence on the graph topology we consider now the more restrictive
condition of fixed transition rates for each bath. This assumption will be relaxed latter. Moreover, we assume the
PCD condition, that implies now that the maximum vertex degree in the graph is six, i.e. each state may be
connected at most to another six ones, see figure 3(b). As a consequence, all the constructed graphs are planar
and 7¢ incorporates the relevant topological information. The number triangles is easily accessible by using the
adjacency matrix, N5 = Tr{A%} /6, where Tr{} denotes the trace.

The graph with the largest connectivity compatible with our restrictions is denoted by G¥. It is constructed
using B units of two triangles sharing one edge, for example one associated with the work bath, see figure 5(a).
We consider square graphs with 1, 4, 9, ... units, being the smallest instance G=' = G,. By construction, the
two configurations of the triangle, cwh and wch, are present. Besides, many other circuits can be identified. For
example {(0, 0), (0, 1), (1, 1), (2, 0), (1,0), (0, 0)} is a circuit C3* 2" with m;, = 1, and {(0, 0), (0, 1), (0, 2), (1, 1), (2,
0), (1,0), (0,0)} acircuit C3*+3"+ with n, = 1. All of them follow the same operation mode. There are also many
trivial circuits, for example {(0, 0), (0, 1), (1, 1), (1, 0), (0, 0)}. This construction is optimal with respect to
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Figure 6. (a) The.gra;ph G8 o (b) Spectral radius as a function of the number of states. The line is merely an eye guide. (c) Heat currents
(normalized by Q") as a function of \/(12.) () , calculated for different bath temperatures parametrized by £, with d,, = 3,
Y=Y = Yy Wh=Lw =05T = 30t, Tj = 34t and T, = 108, in units for which % = kg = wy = 1.

the performance because it can attain the reversible limit as there are not ‘counter-contributing’ circuit, see the
discussion for Cs in section 2.

We also consider two subgraphs of G for comparison purposes. The first one is a row of this units, denoted
by G5, which represents the absorption device studied in [41]. The second one is obtained considering only a
row and removing the upper hot edges. We use this graph, denoted by G2, to compare 74 with other measure of
the graph connectivity in appendix G.

Figure 5(b) shows the parameter 7 for G&, G, and G2, considering only complete units in each case. For a
given number of states, larger values of 7} correspond to larger number of circuits and therefore to a larger
connectivity. When the number of states increases the parameter 74 saturates to a different constant value in
each case. This is reflected in the physical heat currents shown in figure 5(c) for different bath temperatures. This
saturation is due to the difficulty of exploring big circuits or those which are distant from the ground state in
complex graphs. The simple picture based on the parameter 74 is weighted by the transition rates. For decreasing
bath temperatures, all the currents converge to the same result, independently of the number of circuits, since
only the triangle including the ground state contributes significantly to them.

In summary, given a set of transition rates and a number of levels, the best topology corresponds to the most
connected planar graph G2. This construction only contains trivial and positive contributing circuits and
provides in general the largest heat currents for fixed rates.

4.3. Transition rates and heat currents

We have shown that for fixed transition rates the heat currents saturate to a constant value when increasing the
number of states. To overcome this limitation, we now consider a graph with the optimal topology given by G2
and relax the condition on the rates but keeping fixed energy gaps. The circuit affinities and then the
performance are not modified. Considering (4), all the transition rates must be taken as sW,,, with s > 1,and
W, the smallest rate. As discussed for circuit graphs, increasing s will lead to larger heat currents.

In particular, we analyze the construction shown in figure 6(a), denoted by G5, which has a simple physical
implementation as discussed below. Seeking a measure of the graph connectivity when the transition rates
increase with s, and in analogy with the adjacency matrix, we define A’ with elements al; = s when statesiand j
are adjacent with transition rates sW..,, and we denote its spectral radius as p (A'), see appendix G. When
incorporating additional building units into the graph, the spectral radius defined in this way increases nearly
linearly with the number of states, see figure 6(b).
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The graph G¥,, allowing an infinity number of building blocks, represents the master equation of a device
composed of two harmonic oscillators [5]. Each oscillator is connected to a thermal bath at temperatures T. and
T}, The coupling operators are S. = d.and S, = dj, (see appendix A), being d,, the annihilation operator of the
oscillator coupled to the bath . A third bath at temperature T, is coupled to the system through the operator
S, = 4! dy,. For simplicity we assume a very large value of T,,, a regime for which the heat currents can be easily
calculated. Figure 6(c) shows the heat currents as a function of / (11, (ny,) , which gives a rough estimation of the
number of states populated and then of the effective graph size, calculated for increasing bath temperatures. In
this expression (#,,) is the average number of excitations in the oscillator & = ¢, h. When the temperature
increases, larger areas of the graph are populated involving a larger number of circuits, which results in an
increment of the magnitude of the heat currents. This example illustrates that given a machine with the optimal
topology, the rates can always be carefully designed to achieve larger currents without diminishing the
performance.

5. Conclusions

We have determined the steady state heat currents associated with all possible circuits in the graph representing the
master equation of multilevel continuous absorption machines. Each circuit is related to a thermodynamically
consistent mechanism in the device functioning. Although the number of circuits may be very large when
increasingly complex graphs are considered, efficient standard algorithms, which scaleas N (N + 2U) [47], can be
used for determining them. For example, in the graphs studied in previous sections U increases linearly and N¢
quadratically with the number of states and the computational cost scales as N°. The main result of the
decomposition is an equation for the circuit heat currents depending only on the transition rates, without any prior
knowledge of the steady state populations. This expression allows us to analyze the two relevant quantities for
refrigerators and heat transformer, the magnitude of the physical heat currents and the performance. We focus on
devices coupled to three baths, since they can provide the same currents than more complicated setups.

In order to elucidate the role of the graph topology in the thermodynamic properties, we have analyzed
machines constructed by a fixed set of transition rates. In devices represented by a single graph circuit, the
performance depends only on the circuit affinities, which can be tuned to reach the reversible limit, and the
magnitude of the heat currents decreases in general with the number of states. Then the simplest graph, a triangle,
leads to the largest heat currents in most cases and is the proper building block for optimal multilevel machines.

When considering generic devices, we have found that the performance of the device cannot exceed the
corresponding to the circuit with maximum performance. Besides the magnitude of the heat currents is
described by a topological parameter that increases with the graph connectivity. As a consequence, if the
construction of larger graphs including additional circuits presents a limited connectivity, then the magnitude of
the resulting physical heat currents saturates to a constant value, which is different for different constructions.
We use triangles with fixed energy gaps for transitions assisted by the same bath to construct the graph with the
largest possible connectivity, denoted by GZ. This is a planar graph containing neither heat leaks nor ‘counter-
contributing’ circuits.

The assumption of a fixed set of transition rates can be relaxed. We give the necessary condition to improve the
currents without modifying the performance. We provide an example using a system of harmonic oscillators. In this
case the magnitude of the heat currents increases almost linearly with the effective size of the graph, determined by
the achievable range of temperatures. An interesting question is whether there are other physical feasible
implementations leading to a faster than linear dependence of the currents on the number of states.

The circuit decomposition could be employed in other different scenarios, from the study of heat transport
through quantum wires to the analysis of machines designed for complicated tasks involving more than three
baths. Besides, our formalism also applies to the case of reservoirs exchanging both energy and particles with the
system, and even to periodically driven machines. The only condition required is that the population and
coherence dynamics are decoupled in a certain basis. However, this is not always possible, as for example in
weakly driven systems. Finally, it is worth mentioning that the study of four-stroke many-particle thermal
machines has recently been addressed in [48]; the analysis of their continuous counterparts is another
interesting issue we can explore in the future by using the circuit decomposition. We expect these findings will
help in the experimental design of absorption devices.
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Appendix A. Transition rates for quantum systems weakly coupled with thermal baths

In this appendix we describe how to calculate the transition rates W in the master equation (2) for a quantum

system with Hamiltonian Hy = SN | 7a;]i) (il, and coupled with R bosonic baths at temperatures T,. We
assume that the PCD condition holds. The total Hamiltonian reads

R
H :HS + Z(Hs,a + Ha)) (Al)
a=1

where H, are the bath Hamiltonians and the coupling terms are given by
Aso =/ Sa + 80 ® Ba (A2)

with S, and B, a system and a bath operator respectively. The rates <, determine the time scale of the system
relaxation dynamics. Finally, the system operators in the coupling terms are

N
Sa =22 i li) (il (A3)
im1 >

We consider the following assumptions: the system is weakly coupled with the environments, 7y, < kg T;,, and
% K |wij — wirjl, with w;; = wyrand wj; = wj — w;. Then the Born—-Markov and the rotating wave
approximation applies and the master equation for the populations of the eigenstates of H [2] is given by (2)
with transition rates (i < j)

Wi? = Vo |C$ : Fg] (A4)

The functions I'* only depend on bath operators

re — 29%{ f " dt exp( W) Tra[Ba ()Bu ] } (A.5)
0

where B, (t) = exp(i H,t/%)B, exp(—i H,t//%)and p, denotes the bath thermal state. We will consider
bosonic baths of physical dimensions d,, and coupling operators B, o PORNIEN (l;: + l;: T). The summation is

over all the bath modes of frequencies w, and annhilation operators Eu' With this choice the rates I'§ , are [2]
Il = (W/wo)® [N (W) + 11,
re, =rdexp(—wh /ks T,), (A.6)
with N®(w) = [exp(w/ /kg T,,) — 117! . The frequency wy depends on the physical realization of the coupling

with the bath. The condition (3) derives now directly from the conservation of the normalization of the system
density matrix. Besides, the Kubo—Martin—Schwinger relation in (A.6) implies (4).

Appendix B. Quantum implementation of the graphs

We introduce here a possible quantum physical realization of the graphs described in the main text by specifying
their Hamiltonians and coupling operators. Considering bosonic heat baths, the results of appendix A can be
used to obtain the corresponding transition rates. In all cases w, + w,, = wy,.

(i) Ga
Hs = 7 [wel2) (21 + wil3) (31 + (Wi + D 14) (411, (B.1)
and S, = [1) (2] + [3) (4], S,, = 12) (3], S = 1) (3| + |2) (4]. The two-qubit model [5] corresponds
to wi = W
(i) Clupe

Hg = /i (we 12) (2] + wy 3) (3)), (B.2)

and S, = [1)(2], S,, = [2) (3], S, = 1) (3.
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(ii)) Coep-
HAg = 7 (wyl2) (2] + wil3) (3]), (B.3)
and S, = [1) (2], S. = [2) (3], S, = 1) (3.
(iV) C3+2mh.
N my+1
Hy= Y nfwy 2n + 1) (2n + 1| + 7 [(n — Dwy, + w ] |2n) (2n], (B.4)
n=1
and S, = |1) (2, Sy = I3 4 2my, — 1) (3 4 2my}, S = 2™ ) (n + 2|.
(V) CS+3n+‘
R ni+1 ny—ny+1
Hs= 3} 7 [npwn + newe] [, ne) (ny, nels (B.5)
np=0 n.=0
and 8. = ZZ?:O |0, n.) (0, n. + 1],
Sw ="l ny — my + 1) (my + 1, nye — ml, S = S0 |my, 0) (my, + 1, 0).
(B.6)

(vi) G3.
. (N=1)/2
Hs= Y nfwy2n+1)(2n + 1| + Z[(n — Dwy + w] [2n) (2n],

n=1
and $, = SN V220 — 1) (2], S, = SNV 220) 20 + 11,8, = SNV 20 — 1) (26 + 1)

(vii) G§.
R JN-1/N-1
Hs= %" > [mwn + new lmn, ne) (s nel, (B.7)
nh:0 flc:()
and
 WN-1JN-2
S = f (o) lny, ne) (np, ne + 1,
n,=0 n.=0
. JN-1/N-2
Sw= g(np, n)lny — 1, ne + 1) (np, nel,
ny=1 n.=0
R JN-2./N-1
)|, ne) (my + 1, nel, (B.8)

with f, g = 1. The Hamiltonian and coupling operators for G%, are recuperated for an infinity number of

states N, f (n,) = /o + 1,and g(np, n,) = Jnp(n. + 1).

Appendix C. Hill theory and the steady state heat currents
We apply Hill theory [35] to obtain (7). The starting point is the steady state probability of finding the system in

the state i [25, 35]
N,
p=DG) Y AT, (€D
p=1
with D given by (8). Introducing the steady state fluxes along a directed edge
J(Fe) = Wik pl — Wikip:, (C.2)
(C.3)

and the corresponding affinities
Jieti,

X(X,) = kg1
(Xe) BH[W% p

QS
>
ifje je
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Figure C1. Each term between brackets in equation (C.6) is related to two subgraphs, as for example (a) 7° i + X and (b) T; — Xjof
Gs. When removing the cycles, the same forest, in this case the directed edge from vertex 4-3, remains. (c) Six different oriented
maximal trees (solid lines). When adding the appropriate chord (dashed lines) the same cycle {1, 2, 3, 1} is obtained but with two
different forests.

the total steady state entropy production is given by [22, 25]

U
§ = JE)X(X), (C4

e=1

where the orientation of each edge is arbitrary. Introducing the populations in the product between fluxes and
affinities

JEIX (%) = D@y S W AT ) — Wi AT DIX (R, (C.5)
HeM,
where >, s, denotes the summation only over the maximal trees for which x, is a chord, since otherwise the

term between brackets is zero. The product W]qfe A(’j'g) is no more than the algebraic value A of the oriented

subgraph ’?7 + X,, composed of the maximal tree T Z and its chord X,. Then the entropy production (C.4) can
be written as

U
$=D@"'Y Y AT + %) — AT, — Z)IX @) (C.6)
e=1 pueM,

Each term between brackets is only related to a circuit oriented in the two possible directions, é,, and — (E’,,,
associated with ’?Z + %and T Z — X, respectively. When removing these two cycles from the corresponding
subgraphs, the same forest 7 f remains, see for example figures C1(a) and (b). Using this result and the
properties of A, each term in (C.6) can be written as AF f) [A(ay) — .A(—(_f,,)]X (X,). The number of such

2.0 . . .
terms with the same forest ', equals the number of edges of the circuit C,, as shown in figure C1(c). Next we
introduce the cycle affinity (10), X (é,,) = Y., X (X.) with >, the summation over all edges of C,, to obtain

Ne ]
. =0 - - -
§=DG) "D > AFIIAC) — A(=C)IX(C)), (C.7)
v=1 fBev
where 35, denotes the summation over all the different forests associated with C,. This expression can be

further simplified applying the matrix-tree theorem [49], 375, AF f) = det(—W]|C,). The flux associated
with each cycle is

I(C,) = D(9)" det(~WIC))[AC,) — A(=C))). (C8)
Considering that the cycle affinity and flux are odd functions, X ( ~C,) = —X(C,)and I(~C,) = —I(C,), we
can define without any ambiguity the entropy production in the steady state corresponding to each circuit as
$(C) =1C)X(EC) >0, (C.9)

where the last inequality results from D(G)™! > 0, det(—W|C,) > 0and
[AC,) — A(—C)]In[A(C,) / A(—C,)] > 0. Since the only contribution to the steady state entropy production
is due to finite-rate heat transfer effects, we use (C.9) to identify the circuit heat currents (7).

16



10P Publishing

NewJ. Phys. 19 (2017) 113037 J O Gonzélez etal

Appendix D. Circuit decomposition of the four-state model

Here we work out the circuit decomposition of G;. Now we only assume E; < E, < E; < E,, the consistency
relation Ey3 = E,y — E43 = Ej3 — Ej; and the condition (4). The transition matrix for the four-state model is
given by
Wi Wi, W1ha 0
Wi W W3 W O.D
Wi Wi Wi W,

0 Wi Wiz Wy

W =

with diagonal elements W;; = —W§, — WE, Wy, = —WS5 — Wi — W Wy = — W/ — W2 — WS,
and Wy, = —WJ, — W§,.

We denote by C, the cycle {1, 2, 3, 1}, see figure 1(d), for which using (5) we obtain AC) = W;1,
AY(C) = W, and A'(C) = W),. Then AC) = W5 W W/, and A(—C) = WS, Wy, W2 . The cycle affinities
associated with each bath (9) are X¢ ((_f’l) = Ezl/Tc , Xw(al) = E32/TW, and X" ((_fl) = EB/T;,, where
E;; = E; — E;. The contribution of the forests is det(—W|C;) = W1, + WE,, from which the cycle flux is given
by

1(C) = D(Gay (Why + Wi (W5 WE W] — W W W, (D.2)

where D (G,) is determined by using (8). Then the circuit heat currents are §.(C;) = Ey,I ((_fl), 4, (C) = Exl (a)
and g, (C)) = EsiI ((_jl). The consistency of the circuit currents with the firstlaw 4,.(C) + 4,,(C) + ¢,(C) = 0
follows from Ej, + E,3 + E3; = 0. The cycle affinity (10)is X (@1) = Ezl/Tc + E32/TW + E13/Th from which
the circuit entropy production can be determined with (C.9). A similar procedure can be used in order to obtain
the quantities associated with the circuit C,.

For the circuit C; we denote by 53 thecycle {1, 2, 4, 3, 1}.Now AC((_%) = W5, Wy, .AW(@) = 1(thereis
not any edge associated with the work bath) and A Cs) = whwh, A(Cy) = W5, WE W W/ and
A(—53) = WSLWj; th4 W3hl. The cycle affinities associated with each bath are X¢ (83) = (Es4 — Epp) / T,
X"(C;) = 0and X"(Cs) = (Ej3 — E,4)/T;.Noticethat (Ejs — E»y) = —(Ess — Fy2). When the transition
energies are equal, E34 = E}, and E,; = Ej3, all the affinities are zero. The circuit C; involves all the
graph vertices and therefore there is not any forest associated with it. Then (—W|Cs) is an empty matrix and
det(—W|C;) = 1. The cycle flux is given by

I(Cs) = DGy ™" (W5, Wi, WhH Wy — WhHWE W, W, (D.3)

and the circuit heat currents by 4,(C3) = (Ey3 — E21)I(83), q,,(C3) = 0and g,,(C3) = (E3; — E42)I(83).

Appendix E. Other decompositions of the entropy production

There are several possible decompositions of the steady state entropy production in terms of circuits.
Schnakenberg [25] designed a method based on the identification ofasetof U — N + 1fundamental circuits.
The circuits are determined by choosing an arbitrary maximal tree and adding each one of its chords. Taking a
particular orientation for the circuits, a set of fundamental cycles is found. The total steady state entropy
productionisthen § = Zgz_lN HIE)X (E’V), where x,, is the chord giving the circuit C,, and J (¥,) the
corresponding flux. The previous decomposition is simple and specially relevant when U — Nis small.
However, it is not unique, since it depends on the choice of the maximal tree, and some terms in the sum may be
not positive definite, which discards a possible consistent thermodynamic interpretation of each circuit
contribution. Besides the evaluation of ] (X,) requires the calculation of the steady state populations.

As an example we apply Schnakenberg method to the four-state model. The procedure requires an arbitrary
set of fundamental circuits of the graph G,. We choose the maximal tree shown in figure 2(a), which has two
chords, {1, 2}and {2, 4}. Byadding the chord {1, 2} the circuit C; is obtained. Choosing an arbitrary
orientation, for example 81 asin figure 2(d), the directed chord X; goes from states 1 to 2. In this decomposition
the flux associated with each cycle is taken as the corresponding to the directed chord (C.2),

J (%) = Wip — Wi,p,. The cycle affinity is defined by (10) and was calculated in appendix D,

X((_j'l) = EZI/TC + E32/Tw + E13/71,. When adding the chord {2, 4} we obtain the circuit C,. Choosing the
orientation {2, 3, 4, 2}, the directed chord % goes from states 4 to 2. The fluxis J (3) = th4 p45 — sz pzS and

the affinity X (82) = Eg43 / T. + Es; / T, + Eoy / Tj,- Then the entropy production is
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S=J@EX ) + JEX(C). (E.1)

The cycles {81, 62} are the elements of one of the possible fundamental sets of G,. Notice that for our choice the
circuit Cs is not involved.

A related decomposition is obtained by the algorithm of Kalpazidou [29, 30]. For systems showing
dynamical reversibility the algorithm leads to a Schnakenberg decomposition with a clever choice of the
fundamental set of cycles, such that all the terms in the sum are positive. Therefore a positive entropy production
can be assigned to each cycle, which is required in many applications [50, 51]. The algorithm is based on
choosing an orientation for the graph such that all the fluxes (C.2) for the directed edges are positive. Next a cycle
is identified and the entropy production Ji,;, (X,) X (é,,) > 0isassigned to it, where Ji,;, (X)) is the smallest flux
associated with an edge of (_f’u. Then Jp, (%) is subtracted to each flux in the cycle to obtain a new flux field and
the process is repeated for new cycles until a fundamental set is completed [50, 51]. For example, let us assume
parameter values for which the two triangles of the four-state model work as refrigerators. Then the fluxes along
X, %, X3 (from 3to 4), ¥, (from 3 to 1) and X5 (from 2 to 3) are positive. With this orientation only the cycles él
and C, appear in the directed graph and the entropy production can be written as (E.1), where the two terms are
guaranteed to be positive. If we modify the system parameters such that the circuit C, works as a heat
transformer but the overall device remains working as a refrigerator, the total entropy production can still be
determined using (E.1), but the positivity of each term is not guaranteed. Now the fluxes are positive along the
edges X}, —%, —X3, X4 and Xs. Only the cycles (_fl and 83 remain with this graph orientation and the algorithm of
Kalpazidou leads to

S=J@E)X(C) + J(—%) X (C3). (E.2)

However, in this expression the contribution of each mechanism, refrigerator (C,), heat transformer (C,) and
heatleak (C3) could not be isolated.

Appendix F. 73(6> N) in the high and low temperature limits

In the high temperature limit, y, = exp[—E, /(kgT.)] = 1, the transition rates satisfy W_, ~ W,,leadingto

vanishing affinities and heat currents. Now A(T;) is in a good approximation independent of the orientation,
what considerably facilitates the calculations to obtain

-1

RECY ~ | N[+ oy | (F.1)
W, W, W,

withr, = n + myand . + r, + rn, = N.Inthislimit R(E’ N) decreases quadratically (z = 2) with N, except

when one or two of the terms 7, / W, are much larger than the others and r,, remains constant when increasing

N, which can only happens adding two-edge sets. In this limit R(C N) decreases as N~ for small enough values
of N.

In thelow temperaturelimit, y, < land W_, < W,. Again this limit implies vanishing heat currents. The
cycle algebraic value is proportional to the small factors y,,, AC N) o< I1, y;‘““”/, where u,, and u/, are the
number of W_, transitions before and after the highest-energy state respectively. Besides, the largest

o i S h—1 —h
contributions to D comes from two terms that include the lowest number of rates W_,, A(7, )and A(7,),

. . . . 5 . f( X +u,’
beingi = 1 the ground state and j = h the highest-energy state. Both terms are eroportlonal to ][, »; ,
where f,, is the number of W, transitions before the highest-energy state in A(C ). Necessarily u, — f, is
T . SN . . -
positive, increases with Nand then R(C ") decreases exponentially when adding new states to the circuit. For

example, R(a' N) o [1, exp[—uq,E, / (kg T,)] when f, = 0.Examples of these behaviors are given in
figures 4(b) and (e).

Appendix G. Heat currents and spectral radius of G?

The simple topological structure of Qf , see figure G1(a), allows for the direct identification of all the Ny = 3Ne
maximal trees. Then
Ny 2v+1

det(-WIC)D(C) = Y. S AT). (G.1)

p=1i=2v—1
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Figure G1. (a) The graph g?. (b) The parameter 7'13’ (circles), the spectral radius p(A) /6 (squares) and (c) the physical heat currents

(normalized to QQ””) as functions of the number of edges U. The parameters are the same as in figure 5 with t = 1. Solid symbols are
used when a new triangle is completed. The lines are merely eye guides.

Using this result the physical heat currents are given by

YN SN AT )

p=14~i=1
SN AT

wherel < K < 2and K = 3Nz /(2N¢ + 1) in the high temperature limit.

For this graph A(C,) = % and 3 = rl; /3. The parameter 73 as a function of the number of edges is shown in
figure G1(b). The spectral radius p(A), defined as the largest eigenvalue of the adjacency matrix of the
unweighted graph [52], is also shown. The spectral radius is a measure of the graph connectivity which increases
monotonically with the number of edges. However, it does not reflect the decrease in the heat currents each time
apendant edge is added to the graph, see figure G1(c). An increment in the total heat currents is only found when
anew triangle is completed, saturating to a constant value when the addition of new circuits does not improve
significantly the graph connectivity. This behavior is well described by 5.

O = kO™, (G.2)

(e}

Qu=|1+
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