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Stochastic Schrödinger equations are used to describe the dynamics of a quantum open system in
contact with a large environment, as an alternative to the commonly used master equations. We
present a study of the two main types of non-Markovian stochastic Schrödinger equations, linear
and nonlinear ones. We compare them both analytically and numerically, the latter for the case of a
spin-boson model. We show in this paper that two linear stochastic Schrödinger equations, derived
from different perspectives by Diósi, Gisin, and Strunz �Phys. Rev. A 58, 1699 �1998��, and
Gaspard and Nagaoka �J. Chem. Phys. 13, 5676 �1999��, respectively, are equivalent in the relevant
order of perturbation theory. Nonlinear stochastic Schrödinger equations are in principle more
efficient than linear ones, as they determine solutions with a higher weight in the ensemble average
which recovers the reduced density matrix of the quantum open system. However, it will be shown
in this paper that for the case of a spin-boson system and weak coupling, this improvement does
only occur in the case of a bath at high temperature. For low temperatures, the sampling of
realizations of the nonlinear equation is practically equivalent to the sampling of the linear ones. We
study further this result by analyzing, for both temperature regimes, the driving noise of the linear
equations in comparison to that of the nonlinear equations. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1867377�

I. INTRODUCTION

We consider a quantum system with a small number of
degrees of freedom that interacts with an “environment.” We
denote with Hs the Hamiltonian of the small system, with
Hbath the Hamiltonian of the environment, and with Hint the
interaction Hamiltonian. A widely used model for describing
the dynamics of such an open system is a large collection of
harmonic oscillators for the bath, and an interaction Hamil-
tonian that linearly couples the bath with a system operator.1

Thus, the Hamiltonian of our model of open quantum system
dynamics takes the standard form

Htot = Hs + Hint + Hbath

= Hs + g�
�

g��L†a� + La�
†� + �

�

w�a�
†a�. �1�

Here, L is a system operator describing the coupling to the
environmental degrees of freedom �operators a� ,a�

†� and the
constants g� and �� are, respectively, the coupling strengths
and the frequencies corresponding to each of the environ-
mental oscillators with index �. One could easily consider
sums of such interaction Hamiltonians with different cou-

pling operators Lj, but we restrict ourselves in this paper to a
single term.

Traditionally, the dynamics of an open system has been
described in terms of the evolution of the reduced density
operator �s�t�=Trbath��tot�t�� obtained from the total density
operator by tracing over the environmental degrees of free-
dom. The theory of such open quantum system dynamics is
well developed under the Markov hypothesis, assuming that
the relaxation time of the bath is much smaller than any
relevant time scale of the system. The general Markovian
master equation takes the so-called Lindblad form,2 which
gives positive �s�t� for all initial conditions. However, in
modern quantum technologies there are more and more situ-
ations in which the separation of time scales between the
system and the bath does not apply, as for the case of atoms
in contact with electromagnetic fields which are under spatial
boundary conditions �quantum cavities�,3 or immersed in
materials with a certain periodicity in the refraction index
�photonic crystals�.4 For an application of non-Markovian
stochastic Schrödinger equations to a photonic crystal, see
Ref. 5. Non-Markovian effects also arise in the dynamics of
an atomic “laser” beam extracted from a Bose–Einstein con-
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densate where the beam plays the role of the environment.6

Quite generally, non-Markovian effects are expected to be
important at low temperatures.

For a general Hamiltonian of the form �1�, the non-
Markovian master equation, suitable for describing interac-
tions with general baths in lowest relevant order of perturba-
tion theory is presented in Ref. 7 and reads �here for
temperature T=0�

d�s�t�
dt

= − i�Hs,�s�t�� − g2�
0

t

d�����L†L�− ���s�t�

− g2�
0

t

d��*����s�t�L†�− ��L + g2�
0

t

d�����

�L�− ���s�t�L† + g2�
0

t

d��*���L�s�t�L†�− �� .

�2�

In Eq. �2� we denote with

L��� = eiHs�Le−iHs�, �3�

the system part of the interaction Hamiltonian in the Heisen-
berg picture. In Ref. 7 it is also shown how the result �2� may
be obtained from a stochastic Schrödinger equation. By re-
defining the operators L and L† as explained in Sec. II, Eq.
�2� is also equal to the master equation presented in Ref. 8,
and leads to the so-called Redfield master equation9 in the
long-time limit when �0

t can be replaced by �0
�. In this paper,

we express the explicit dependence of the equations on the
coupling parameter g, defined as g�H0�= �Hint�, where �A�
denotes the magnitude of the operator A, and H0=Hs+Hbath.
The non-Markovian memory effects appear through the inte-
grals over the correlation function ����, which in the Markov
approximation may be replaced by a � function. In that limit,
Eq. �2� turns indeed into a master equation of Lindblad form.

In recent years a new method has been developed to
solve the dynamics of quantum open systems, based on so-
called stochastic Schrödinger equations. These equations can
take the form of a deterministic evolution interrupted by sto-
chastic quantum jumps,10 or they can be of continuous and
diffusive type, that is, quantum state diffusion.11–16 The latter
class has recently been extended to treat non-Markovian
situations17,8,18–21. In general, stochastic Schrödinger equa-
tions evolve wave functions �	t�z�	, which depend on a sto-
chastic variable zt �we will denote �	t�z�	
�	t�zt�	 through-
out the paper�. The crucial property of any stochastic
approach is that the ensemble average �denoted by M�¯�� of
the projector composed by wave functions recovers the re-
duced density operator:

�s = M��	t�z�	�	t�z��� . �4�

In principle, the theories we are going to develop preserve
the norm of the reduced density operator, 1=Tr �s

=M��	t�z� �	t�z�	�. In practice, however, due to approxima-
tions and due to only a finite number of realizations, the
numerical ensemble mean M��	t�z� �	t�z�	� may differ from
unity. Therefore, in the applications discussed towards the
end of this paper, we determine the reduced density operator

through �s=M��	t�z�	�	t�z��� /M��	t�z� �	t�z�	�, a prescrip-
tion that was seen to lead to stable results.

In all these considerations, M�¯� denotes the average of
solutions weighted by the distribution of the driving noise.
The stochastic Schrödinger equation scheme may provide a
significant numerical advantage over the master equation ap-
proach, in particular, as soon as the Hilbert space dimension
N of the open system is large. In the stochastic approach, one
only needs to integrate a state of dimension N for a certain
number of realizations 
, in order to obtain �s. In contrast,
the solution of the master equation demands the integration
of N2 elements of the density operator. If the number of
realizations of the stochastic scheme is not too large �which
also depends on the accuracy one aims to achieve�, then
stochastic Schrödinger equations may be in practice more
advantageous than master equations.

Moreover, to be numerically efficient �importance sam-
pling�, it may be very important to choose a stochastic equa-
tion which gives solutions with a significant weight in the
average �4�, providing the best possible sampling. The aim of
this paper is to give some hints and criteria, based on the
temperature of the bath, for making such a choice between
different equations in the non-Markovian case. For this pur-
pose, two particular kinds of non-Markovian stochastic
Schrödinger equations will be studied: stochastic equations
that are linear in the wave function, and non-linear stochas-
tic equations. To be more concrete, two linear equations,
which are characterized by having a constant noise distribu-
tion function, will be treated: the convolutionless linear
equation derived by Diósi and Strunz in Ref. 19, and the
convoluted equation derived by Gaspard and Nagaoka in
Ref. 8.

As will be explained in more detail below, the probabil-
ity distribution of the noise corresponds to a certain distribu-
tion function of the bath, and therefore it might be advanta-
geous to take into account explicitly the dynamics of the
bath. The nonlinear stochastic equation proposed by Diósi,
Gisin, and Strunz in Ref. 17 considers such an evolution of
the noise statistics, giving rise, in principle, to a more effi-
cient sampling of the sum �4�. However, we will show in this
paper for the case of a spin-boson model that the temperature
of the bath is a very important parameter to determine
whether this improvement in the sampling is significant or
not. This is very useful information: since nonlinear equa-
tions take a longer time to be integrated numerically com-
pared to linear equations, they should only be used when it is
needed or, to put it in another way, when the noise probabil-
ity distribution �i.e., the environmental state� evolves consid-
erably due to the interaction.

The paper is organized as follows: In Sec. II we briefly
present the two non-Markovian linear equations already
mentioned, and show analytically their equivalence in the
relevant order of perturbation theory. In Sec. III we will
study two nonlinear stochastic equations, both intimately re-
lated and characterized by having a dynamical probability
distribution for the noise. Section IV will be devoted to the
application of the different stochastic equations to a spin-
boson system. In the first part of this section, we show the
equivalence of the two linear equations. A study of the norm
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of single trajectories, for high and low temperatures, is pre-
sented in the following section. The last sections are devoted
to investigate the improvement in the sampling provided by
nonlinear equations by comparing both linear and nonlinear
equations in these two temperature regimes. In particular, the
statistical significance of the solutions of the linear and non-
linear equations will be studied comparing their ensemble
average with the solutions of the corresponding non-
Markovian master equation �2�. Finally, we draw conclu-
sions.

II. NON-MARKOVIAN LINEAR EQUATION

A. Linear convolutionless equation

The first Non-Markovian stochastic Schrödinger equa-
tion �linear� was derived by Diósi and Strunz19 assuming that
all the environmental oscillators are initially in the ground
state �or analogously that the bath is at zero temperature�.
For the model Hamiltonian �1�, the non-Markovian stochas-
tic Schrödinger equation reads

d

dt
�	t	 = − iHs�	t	 + gLzt�	t	 − g2L†�

0

t

d���t − ��
��	t	
�z�

.

�5�

It should be clear that the states �	t	= �	t�z�	 are functionals
of the driving noise zt, which we do not always write out
explicitly. The first term on the right-hand side of Eq. �5�
represents the unitary free evolution of the system, whereas
the other two terms correspond to the nonunitary and irre-
versible dynamics due to the interaction of the system with
the bath. The second term �a stochastic driving term� may be
interpreted as a stochastic forcing due to the action of the
bath degrees of freedom on the system. The third term �a
dissipative term� represents the energy damping or relaxation
process of the system when interacting with the bath. The
driving term depends on a colored complex Gaussian sto-
chastic process zt, which satisfies the following statistical
properties:

M�zt� = 0, M�ztz�� = 0,

�6�
M�zt

*z�� = ��t − �� ,

where ��t−�� is the zero temperature correlation function of
the bath �or response function in Refs. 22�, which can be
written as23

��t − �� = �
�

g�
2e−i���t−��. �7�

Equation �5� is exact, but its practical use is limited due to
the functional derivative ��	t�z�	 /�z� that appears in the dis-
sipative term. This problem is tackled by Diósi, Gisin, and
Strunz17 by proposing the following replacement for it:

��	t	
�z�

= O�t,�,z��	t	 , �8�

where O�t ,� ,z� is a linear operator that has to be constructed
for each case under consideration. For instance, O�t ,� ,z�
may be obtained from a perturbation series,24 which gives

O�t,�,z� = L�� − t� + O�g� , �9�

where L��� is the Heisenberg operator from Eq. �3�. It should
be noted that the noise term is of order g, while the dissipa-
tive term is at least of order g2 due to the presence of the
correlation function of the noise. As a consequence, for a
second-order linear stochastic equation, only the first term of
the perturbative expansion of O�t ,� ,z� in Eq. �9� is required.
With the replacement of the form �8� for the functional de-
rivative, there is no reference to the wave function at earlier
times under the memory integral in the dissipative term of
Eq. �5�. The equation becomes time local in �	t	 and will be
referred to as the convolutionless linear stochastic
Schrödinger equation in this paper.

A possible derivation of the linear equation �5� may be
found in Ref. 25, based on a �Bargmann� coherent state basis
for the environmental degrees of freedom �in which �z�	
=exp�z�a�

†��0	�. In this basis, the state of the total system
�quantum open system and environment� is expressed as

��t	 =� d2z�

�
e−�z�2�	t�z�	�z	 �10�

with the notation �z	= �z1	�z2	¯ �z�	¯ for the state of the
environment, a product of coherent states of all the environ-
mental oscillators. The quantity zt that appears in the linear
equation �5� has a simple microscopic expression. It is a
combination of coherent state labels z�

*, given by

zt = − i�
�

g�z�
*ei��t. �11�

At first, there is no reason to refer to this zt as a stochastic
process. The latter meaning comes about as soon as we
evaluate the reduced density operator �t based on expression
�10� of the total state. We find a a Gaussian mixture of states
�	t�z�	,

�t =� d2z

�
e−�z�2�	t�z�	�	t�z�� �12�

and thus, an explicit construction of an ensemble mean of
type �4�.

The corresponding closed evolution equation �5� for the
states of the system can now be seen as a stochastic equation.
In a Monte Carlo sense, we have to choose a Gaussian ran-
dom selection of coherent state labels z� to perform the in-
tegral over all of them in Eq. �12� which amounts to choos-
ing realizations of the Gaussian noise zt from Eq. �11� with
statistics �7�.

So far, the stochastic equation was derived from the
zero-temperature expression �10� for the total state. A more
general linear stochastic Schrödinger equation, valid for
baths at finite temperature, can be derived by canonically
mapping the nonzero temperature density operator of the
heat bath onto the zero-temperature density operator of a
larger hypothetical environment.17 The resulting finite tem-
perature linear equation is
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d

dt
�	t	 = − iHs�	t	 + gLzt

−�	t	 + gL†zt
+�	t	 − g2L†

��
0

t

�−�t − ��
��	t	
�z�

− d� − g2L�
0

t

�+�t − ��
��	t	
�z�

+ d� .

�13�

For simplicity we have dropped the explicit dependence of
the wave function on the two independent Gaussian noises zt

−

and zt
+, which have zero means and the following correla-

tions:

M�zt
−z�

−� = 0,

M�zt
−*z�

−� = �−�t − �� = �
�

g�
2�N���� + 1�e−i���t−��,

M�zt
+z�

+� = 0, �14�

M�zt
+*z�

+� = �+�t − �� = �
�

g�
2N����ei���t−��

M�zt
+*z�

−� = 0.

The function N���= �exp�q�
�−1�−1, where we use the
standard notation 
= �kT�−1 �with k the Boltzmann constant�,
is the average thermal number of quanta in the mode �.
Again one can try to replace the functional derivatives in Eq.
�13� by an ansatz of type �8�. Using a perturbative expansion
for O�t ,� ,z� we again find

��	t	
�z�

− = O−�t,�,z±��	t	 = L�� − t��	t	 + O�g� ,

�15�
��	t	
�z�

+ = O+�t,�,z±��	t	 = L†�� − t��	t	 + O�g� .

Note that at zero temperature, the linear stochastic equation
�5� is reobtained, since for this case N��� , �+�t−��, and z+

are zero, while �−�t−�� becomes equal to Eq. �7�. For finite
temperature and a Hermitian coupling operator L=L†=K,
Eq. �13�, is simplified as

d

dt
�	t	 = − iHs�	t	 + gKzt�	t	

− g2K�
0

t

d��T�t − ��K�� − t��	t	 + O�g3� . �16�

where now the noise is zt=zt
++zt

− and has the following sta-
tistical properties:

M�ztz�� = 0,

�17�
M�zt

*z�� = �−�t − �� + �+�t − �� = �T�t − ��

= �
�

g�
2�coth
��


2
�cos����t − ���

− i sin����t − ���� ,

this latter being the standard bath correlation function at non-
zero temperature.1,22 Clearly, as the temperature goes to zero,
�T�t−�� coincides with the zero-temperature expression �7�.

B. Linear convoluted equation

A second linear non-Markovian stochastic Schrödinger
equation has been proposed by Gaspard and Nagaoka.8 In
this section it will be shown that their equation is equivalent
to Eq. �13� up to the relevant second order in the coupling
parameter g, although its derivation is based on very differ-
ent hypothesis. Following Ref. 8, let us start from a general
Hamiltonian for a system and its environment in the form

Htot = Hs + Hbath + Hint = H0 + gV , �18�

with H0=Hs+Hbath and an interaction potential V that we
assume takes the form

V = V† = �



S
B
. �19�

The Hermitian subsystem and bath coupling operators are S


and B
, respectively. This form of the interaction Hamil-
tonian covers our earlier model �1� by choosing two contri-
bution 
=1,2 in the sum, with

S1 = L + L†, S2 = i�L − L†� �20�

and

B1 =
1

2�
�

g��a� + a�
†�, B2 =

i

2�
�

g��a� − a�
†� . �21�

In this approach to a stochastic equation the total wave func-
tion is again expanded, here, however, in the basis of eigen-
functions of the bath ��n	�, to get

��t	 = �
n

�	t
n	�n	 . �22�

As before, the ensemble of system states �	t
n	 recovers the

mixed reduced density operator. The evolution of each of
these states will depend on the evolution of others through a
set of coupled differential equations. Due to this mutual in-
teraction, and provided that the number of system states is
sufficiently large, they will behave in a random way. This
brings the idea of deriving a stochastic Schrödinger equation,
which evolves only one member of the ensemble of system
states �	t

n	, under the assumption that such a state is statisti-
cally representative of the rest. To decouple the evolution
equation of such a state from the time evolution of the rest,
the Feshbach projection-operator method is used. Using a
perturbative expansion in the coupling strength, and for the
special choice of operators �20� and �21�, the following equa-
tion is obtained:
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d

dt
�	t	 = − iHs�	t	 + g�L�A�t� + L†�B�t���	t	

− 2g2L†�
0

t

d��C11��� − iC21����

�L�− ��e−iHs��	t−�	 − 2g2L�
0

t

d��C11���

+ iC21����L†�− ��e−iHs��	t−�	 + O�g3� , �23�

where the selected system state �	t
l	 now represents the wave

function �	t��A ,�B�	
�	t	. The variables �A�t� and �B�t� are
the combinations,

�A�t� = �2�t� − i�1�t� ,

�24�
�B�t� = − �2�t� − i�1�t� ,

with

�i�t� 
 �
m��l�

�l�Bi�t��m	e−
��m−�t�/2ei��m−�l�. �25�

It is assumed that the ��i� form a set of independent random
phases, uniformly distributed in the interval �0,2��, and �m

and �l are eigenvalues corresponding to eigenfunctions �m	
and �l	 of the bath Hamiltonian, respectively. The stochastic
nature of Eq. �23� is contained in the behavior of �i�t�. If the
number of states is large enough to perform the sum �25�
over a large set of phases ��m�, these quantities can be char-
acterized as Gaussian random variables by the central limit
theorem. As complex Gaussian variables, �i�t� satisfy similar
conditions to Eq. �7�,

M��i�t�� = 0, M��i�t�� j���� = 0,

�26�
M��i�t�� j

*���� = Cij
* �t − �� .

Following the definition �25� for the noise and since
M�exp�i��m−�n���=�mn, the noise correlation is given by

M��i�t�� j
*���� = �

n

e
��l−�n��l�Bi����n	�n�Bj�t��l	 , �27�

or equivalently,

�M��i�t�� j
*�����l =

Zb

e−
�l
�l�Bi�t��b

eqBj����l	 , �28�

where �b
eq=Zb

−1 exp�−Hb
� is the bath density matrix in equi-
librium. In order to obtain the typical value of this correla-
tion function, a thermal average is performed �see Ref. 8, and
references therein for further details�, so that

�
l

e−
�l

Zb

�M��i�t�� j
*�����l = Trb��b

eqBj���Bi�t�� = Cij
* �t − �� .

�29�

With the choice �21� for the bath coupling operators B1 and
B2 we find

C12�t� = − C21�t� =
i

4�
�

g�
2�N����ei��t

− �N���� + 1�e−i��t� ,

�30�

C11�t� = C22�t� =
1

4�
�

g�
2�N����ei��t + �N���� + 1�e−i��t� ,

where the thermal averages of a� , a�
†, are26

Trb��b
eqa��0�a��0�� = 0,

�31�
Trb��b

eqa�
†�0�a���0�� = ����N���� ,

and N���� is again the average thermal number of quanta in
the mode ��. With expressions �31�, the combinations
2�C11�t�± iC21�t�� appearing in Eq. �23� are equal to the cor-
relation functions �±�t� of Eq. �14�, and the noise combina-
tions �A and �B are equal, respectively, to the noises z− and
z+ of that equation. As in the previous approach, when we
consider the case of a system coupling operator L that is
Hermitian L=L†=K, we find

d

dt
�	t	 = − iHs�	t	 + gKzt�	t	 − g2K�

0

t

d��T�t − ��

�K�� − t�e−iHs�t−���	�	 + O�g3� , �32�

where we have already changed the notation for the noise,
�B�t�+�A�t�
zt.

Let us now show how Eq. �16� derived by Diósi and
Strunz19 and Eq. �32� obtained by Gaspard and Nagaoka8 are
equivalent up to order g2. Indeed, it is consistent with the
second-order approximation to substitute the wave function
�	�	 appearing in the dissipative term of Eq. �32� by its
expansion up to order g0 only. For that it is enough to
see that �	�	= �e−iHs�+O�g���	0	 and furthermore, �	0	
= �eiHst+O�g���	t	. Replacing this expression for �	0	 in the
expression for �	�	, we conclude that

�	�	 = �eiHs�t−�� + O�g���	t	 . �33�

Therefore, within second order in the coupling strength g,
Eq. �32� becomes equal to convolutionless Eq. �16�. The
same holds true for its non-Hermitian version �23�, which
becomes equal to Eq. �13�. Clearly, this equivalence also
extends to the zero temperature equations.

III. NON-MARKOVIAN NONLINEAR EQUATIONS

As noted by Diósi, Gisin, and Strunz,17 the linear equa-
tion has an important drawback. During the evolution of the
trajectories, which is driven by an input noise governed by
the initial state of the bath, the solutions �	t	 may lose their
norm and therefore statistical relevance. This problem comes
from not having considered that the interaction between the
system and the bath not only affects the system, but also the
bath itself. To see this more clearly �see Ref. 25 for further
details� let us follow the coherent state basis derivation of
Sec. II A to define the Husimi function �or Q function� of the
bath as
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Qt�z,z*� =
e−�z�2

�
�z�Trs���t	��t���z	 , �34�

where �z	 denotes a coherent state of the bath in the Barg-
mann basis. Since each of these states corresponds to a cer-
tain value of the noise the function Qt�z ,z*� may be inter-
preted as the probability distribution of the noise. The
substitution of Eq. �10� in Eq. �34� gives the following ex-
pression for the Husimi function:

Qt�z,z*� = �	t�z��	t�z�	Q0�z,z*� �35�

with Q0�z ,z*� the initial Gaussian distribution of coherent
states Q0�z ,z*�=e−�z�2 /�. In terms of Eq. �35�, the density
operator �12� can be defined as a mixture of pure normalized
states weighted by Qt�z ,z*�,

�t =� d2zQt�z,z*�
�	t�z�	�	t�z��
�	t�z��	t�z�	

. �36�

With this expression it is clearer to see that, once the inter-
action is “switched on” and the environmental oscillators
start to move away from the origin according to the distribu-
tion Qt�z ,z*�, the states �	t�z� / �	t�z� �	t�z�	1/2, which accord-
ing to Q0�z ,z*� correspond to small z, will have a decreasing
weight in the sum �36�.

The Husimi function shows a closed time evolution of
Liouville form for the set of oscillators z� composing the
quantity z, corresponding to the following phase space
flow:17

ż�
* = ig�e−i��t�L†	t. �37�

In terms of the trajectories z�t� that follow this flow, the
Husimi function Qt�z ,z*� at time t can be expressed as

Qt�z,z*� =� d2z0Q0�z0,z0
*��2�z − z�t�� , �38�

where somewhat symbolically, z�t� represents the set of so-
lutions of the different trajectories of the oscillators starting
from the set of initial values �z�

*�0�=z�,0
* �. In that way, we

can now replace Eq. �36� by an integral of wave functions
evaluated in the dynamical states z�t�
�z��t�� as

�t =� d2z0Q0�z0,z0
*�

�	t�z�t��	�	t�z�t���
�	t�z�t���	t�z�t��	

=� d2z0

�
e−�z0�2 �	t�z�t��	�	t�z�t���

�	t�z�t���	t�z�t��	
. �39�

Now, to perform the integral �39� with a Monte Carlo
method, a new stochastic variable z̃t

* is defined, which corre-
sponds to z�t� with a random selection of the initial values
for the environmental oscillators �z�

*�0��. From the flow
equation �37�, one obtains

z̃t = zt + g� d��*�t − ���L†	�. �40�

Here, the variable zt is the noise as it appears in the linear
stochastic Schrödinger equation, which corresponds to the
stationary statistics with distribution function Q0�z ,z*�. The
last term represents a dynamical shift or displacement of

each zt which depends on the history of the interaction with
the system. The stochastic equation for the wave function
�	�z̃t�	 with a shifted noise in the driving term is17

�	t�z̃t�	
dt

= − iHs�	t�z̃t�	 + gLz̃t�	t�z̃t�	

− g2�L† − �L†	t�Ō�t, z̃t��	t�z̃t�	 , �41�

with Ō=�0
t d���t−��O�t ,� , z̃t�. In order to make clear that the

wave function now depends on the shifted noise, we show
this dependency explicitly through the notation �	t�z̃t�	. By
evolving �41� we ensure that the wave functions �	t�z̃t�	 cor-
respond to those realizations that contribute with a signifi-
cant probability �importance sampling�, which according to
Eq. �40� is ensured by the shift term. It is important to note
that the difference between the original and the shifted noise
is of the order of the coupling strength parameter g. Thus, the
contribution of the shift turns out to be of the relevant order
g2 in the evolution of the wave functions.

We see from Eq. �39� that the reduced density operator
can now be written as a mixture of normalized stochastic
states,

�t =� d2z0

�
e−�z0�2�	̃t�z�t��	�	̃t�z�t��� �42�

with �	̃t	= �	t�z̃t�	 /��	t�z̃t� �	t�z̃t�	. From Eq. �41� one ob-
tains an evolution equation for these normalized states,17

giving

d�	̃t�z̃t�	
dt

= − iHs�	̃t�z̃t�	 + g�L − �L†	�z̃t�	̃t�z̃t�	

− g2��L† − �L†	t�Ō�t, z̃t� − ��L† − �L†	t�Ō�t, z̃t�	�

��	̃t�z̃t�	 . �43�

Let us now investigate the three equations described above,
the linear equation �5�, the shifted equation �41� and the non-
linear equation �43� by applying them to a spin-boson model.
We are interested in studying the numerical equivalence of
both linear equations that has been already proved analyti-
cally. Finally, we will focus on the problem of sampling, and
the convenience of using a linear or a nonlinear stochastic
Schrödinger equation.

IV. THE SPIN-BOSON MODEL

A spin-boson model consists of a two-level system �or a
spin s=1/2� coupled to a thermal bath of bosonic harmonic
oscillators. Defining the Pauli matrices �z and �x as usual,

�z = 
1 0

0 − 1
� ,

�x = 
0 1

1 0
� ,

the spin-boson model takes the form of the total Hamiltonian
�1�,
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Htot = −
�

2
�z + g�

�

g��x�a� + a�
†� + �

�

��a�
†a�, �44�

where � is the energy splitting between the two levels, g is
the coupling parameter, and �x is the coupling operator of
the system with the bath. Here we have chosen �=0.1 and
g=0.1. In the continuum limit, the correlation function �17�
that characterizes the bath, reads as follows:

�T�t� = �
0

�

d�J����coth
�


2
�cos��t� − i sin��t�� .

�45�

Here, J��� is the spectral strength,

J��� =
�3

�c
2 exp�− �/�c� , �46�

where �c is a cutoff frequency,8 here chosen as �c=1.

A. Comparison of the linear equations

It has been shown in Sec. II B that the linear equation
�13� with the perturbative replacement �15� of the functional
derivative is equivalent to Eq. �23� up to second order in g.
Figure 1 confirms this expectation where we compare the
ensemble averaged result of both equations obtained with the
same number of trajectories, with that of the master equation.
Indeed, the difference between each result and the master
equation is approximately equal, and the discrepancy be-
tween both results increases with time as the effects of the
perturbation becomes more important and the second-order
approximation less accurate.

B. Norm of the wave function

We first study the norm of the linear equation �5� and the
shifted equation �41� for a single trajectory representative of

the rest. As we see in Fig. 2, norm preservation is lost after
very few time steps for high temperatures. In the lower tem-
perature case �Fig. 3�, the norm of the solutions of either
equation is clearly more stable than for the high temperature

=0.01, and remains approximately bounded in the time in-
terval studied. Finally, the nonlinear normalized equation
�43� properly maintains the norm provided that the time step
of the numerical integration of the equations is small enough
to avoid the problems derived from its discretization. In
practice, one keeps the states properly normalized numeri-
cally.

C. Ensemble averaged results at different
temperatures

We have seen in the last section that norm preservation
is rapidly lost at high temperatures. However, the important
aspect is that despite of this problem, the shifted equation
�41� gives good averaged results. Averaging with the same

FIG. 1. Comparison of the convolutionless linear equation �16� �dotted line�
and the convoluted linear equation �32� �long dashed line� for the same
number of trajectories �
=10 000�. It can be observed that both equations
present the same degree of approximation to the non-Markovian master
equation �2� �solid line�. The difference between each other increases with
time as the second-order approximation becomes less accurate.

FIG. 2. Evolution of the norm of a single trajectory for high temperature

=0.01, using the linear equation �5� �dotted line� and the shifted equation
�41� �solid line�.

FIG. 3. Same as Fig. 2 but for low temperature 
=10.
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number of trajectories, the linear equation, in contrast, pre-
sents a solution which during the evolution becomes more
and more fluctuating and far away from the master equation
curve. These results, shown in Figs. 4 and 5 for 
=100 and

=10 000 trajectories, respectively, suggest that the shift be-
comes essential for the true evolution at high temperature,
improving significantly the results in comparison with those
of the linear �nonshifted� equation.

A further question shall be addressed next: Does a nor-
malization of the wave function during the evolution still
improve the statistics? To answer we compare in Fig. 6 the
results of the shifted equation �41� and the nonlinear �also
shifted� equation �43�, which evolves normalized states. Us-
ing an ensemble of 
=1000 trajectories it appears that they
both give the same degree of accuracy. To be more specific,
for this number of trajectories it seems that the solutions of
both equations still present some fluctuations around the re-
sult of the master equation, but these have the same ampli-
tude in both cases. As a consequence, we can conclude that,

at least for the spin-boson model, no further improvement of
the statistics is achieved when averaging over the normalized
solutions of Eq. �43�. We conclude that in practice, it is ir-
relevant whether one normalizes after each time step. As
long as one uses the shifted noise and keeps track of the
norm in order to evaluate expectation values with the correct
normalization factor, both the linear shifted equation �41�
and the full nonlinear equation �43� give results of equal
quality.

It is now important to study whether the shifted equation
�41� still presents a better sampling than the linear equation
�16� for low temperatures �
=10�. As shown by Gaspard and
Nagaoka,8 the linear equation already gives averages that are
in good agreement with the master equation. Figures 7 and 8
show that indeed, there is no appreciable improvement of the
shifted equation with respect to the linear one in any of the
two statistical ensembles of trajectories used �10 000 and

FIG. 4. Solutions of the linear equation �5� �dashed line� and the shifted
equation �41� �long dashed line� for 
=0.01 �high temperatures�, using an
ensemble of 
=100 trajectories. Results are compared to the master equa-
tion �thick line�.

FIG. 5. Same as Fig. 4 but with 
=10 000 trajectories.

FIG. 6. Solutions of the shifted equation �41� and the nonlinear equation
�43� �long dashed and dotted line, respectively� for 
=0.01 �high tempera-
tures�, with an average of 
=1000 trajectories. The result of the master
equation is displayed with a solid line.

FIG. 7. Solutions of the linear equation �long dashed line� and the shifted
equation �dotted line� for 
=10, averaged for 10 000 trajectories. The re-
sults are compared to the one obtained from the master equation �thick line�.
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150 000 trajectories, respectively�. These results, added to
the fact that the shifted equation is numerically slower, make
the linear equation a more sensible choice in the low tem-
perature regime.

D. A study of the noise and the shifted noise

When comparing the shift term �g�0
t d���t−��*��x

†	��
and the original noise zt that appear in expression �40� for
both temperature regimes, we find the reason for the previ-
ous observations. We present in Fig. 9 the time evolution of
the real and imaginary parts of both quantities. For low tem-
peratures 
=10, the shift remains close to zero during the
whole evolution, and therefore its significance relative to the
noise zt is small. However, the situation changes for high
temperatures, �
=0.01�, in which the real part of the shift
reaches an amplitude of fluctuations equal to that of the
noise, producing a shifted noise very distant from the non-
shifted one.

These results can be seen more clearly in Figs. 10 and
11, which show the real and imaginary parts of the shift term
and the noise for low and high temperatures, respectively.
We observe that at low temperatures the region in which the
shift is distributed �a black point located around the center of
the coordinate system in Fig. 10� is small in comparison to
the region of values of zt. The situation at high temperatures
is different, as we can see in Fig. 11. Here, the values of the
shift term spreads horizontally across the real axis with mag-
nitudes equal to those of the noise.

The latter results explain why at high temperatures it is
essential to use the shifted noise equation �41�, taking into
account dynamically the dynamics of the probability distri-
bution. For lower temperatures this shift is much less impor-
tant, and the original linear equation can still be used satis-
factorily.

E. Noise and shift for other temperatures

Let us study the time averaged magnitude of the shift
term in comparison to that of the noise for other temperature

FIG. 8. Same as Fig. 7 but now with 150 000 trajectories.

FIG. 9. Real and imaginary part of the noise �solid lines� and the shift term
�dashed lines� as a function of time for both temperature regimes.

FIG. 10. Real and imaginary part of the noise �circles� and shift term
�crosses� for low temperature 
=10.

FIG. 11. Same as Fig. 10 but now for high temperature 
=0.01.
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values. Here we define the time averaged magnitude of a
stochastic quantity f�t� simply as T�f�=1/T�0

Td��f����. The
relation between these values will again give us an idea of
the necessity of using a nonlinear equation instead of the
linear one. For intermediate temperatures �for values of 

between 0.01 and 10� we see in Fig. 12 that only for very
high temperatures �values of 
 close to zero�, the magnitude
of the real part of the shift is comparable to that of the noise,
and therefore a nonlinear equation is needed. However, for 

greater than 0.1, even the real part of the shift term saturates
to magnitudes very close to zero in comparison to the mag-
nitude of the noise, which saturates to values of �100 �in
inverse time units�.

V. CONCLUSIONS

Two different stochastic linear equations which describe
the dynamics of a quantum open system, the convolutionless
equation �13� �Refs. 17 and 19� and the convoluted equation
�23�,16 have been compared and shown to be equivalent up to
second order in the perturbation parameter. We have verified
their equivalence numerically for a spin-boson system with a
Hermitian coupling operator �x. The linear equation �13�,
when considering the effects of the interaction with the quan-
tum open system in the probability distribution of the bath,
gives rise to a second type of stochastic equation which is
nonlinear with the wave function �	t	, but which still evolves
non-normalized states �in the case of Eq. �41�� or normalized
states, in the case of Eq. �43�.16,25 For the spin-boson model,
the linear and the two nonlinear equations have been studied
for high and low temperatures, showing how the temperature
is a very important parameter to decide whether it is neces-
sary to use a nonlinear equation. Indeed, in the high tempera-
ture regime, the shifted noise z̃t appearing in the two nonlin-
ear equations becomes very different from the original noise
zt of the linear equation. The physical reason underlying this

behavior is the dynamics of the environmental distribution
�Husimi� function Qt�z ,z*� that may evolve considerably
throughout the phase space of the bath. In such a case, non-
linear equations lead to a much more efficient sampling than
linear ones. At low temperatures, however, we show that the
noise probability distribution does not evolve significantly
and the shifted noise remains approximately equal to the
nonshifted noise which drives the linear equation. As a con-
sequence, the improvement in the sampling provided by non-
linear equations is not very appreciable, and the best choice
in this case is the simpler linear equation. It is also interest-
ing to point out that the nonlinear equation that evolves nor-
malized states �43� does not present a further improvement in
the sampling �at least in the spin-boson model� in compari-
son with the nonlinear equation �41� which still evolves non-
normalized states, with the need, however, to keep track of
the norm. While mathematically, both equations should give
identical results anyway, we here see that even in practical
applications, there is no difference in the quality or efficiency
of the results obtained from these two nonlinear equations.

ACKNOWLEDGMENTS

The authors thank G. Nicolis and José M. Gómez
Llorente for their encouragement and support, and M. Es-
posito and A. Ruíz for fruitful discussions at Brussels and La
Laguna. Support was provided by Gobierno de Canarias
�Grant No. PI2002/009�, Ministerio de Ciencia y Tecnología
�Grant No. BFM2001-3349�, and the EU �CERION II�. I.d.V.
was financially supported by a Ministerio de Ciencia y Tec-
nología doctoral fellowship �Grant No. AP2001-2226�. P.G.
thanks the “Communauté française de Belgique-Actions de
Recherche Concertées,” the F.N.R.S. �Belgium�, the
F.R.N.C., and U.L.B for financial support.

1A. O. Caldeira and A. J. Leggett, Physica A 121, 587 �1983�.
2G. Lindblad, Commun. Math. Phys. 48, 119�1976�; G. V. Gorini, A. Ko-
ssakowski, and E. C. G. Sudarshan, J. Math. Phys. 17, 821 �1976�.

3See, for example S. John and T. Quang, Phys. Rev. Lett. 74, 3419 �1995�;
B. Garraway, Phys. Rev. A 55, 2290 �1997�; N. Vats and S. John, ibid. 58,
4168 �1998�.

4See, for example, S. John and T. Quang, Phys. Rev. A 50, 1756 �1994�; S.
Bay, P. Lambropoulos, and K. Molmer, Phys. Rev. Lett. 79, 2654 �1997�;
M. W. Jack and J. J. Hope, Phys. Rev. A 63, 043803 �2001�; G. M.
Nikolopoulos and P. Lambropoulos, ibid. 61, 053812 �2000�.

5I. de Vega, D. Alonso, and P. Gaspard �unpublished�.
6J. J. Hope, Phys. Rev. A 55, 2531 �1997�; J. J. Hope, G. M. Moy, M. J.
Collet, and C. M. Savage, ibid. 61, 023603 �2000�.

7T. Yu, L. Diósi, N. Gisin, and W. T. Strunz, Phys. Rev. A 90, 91 �1999�.
8P. Gaspard and M. Nagaoka, J. Chem. Phys. 13, 5676 �1999�.
9A. G. Redfield, IBM J. Res. Dev. 1, 19 �1957�; Adv. Magn. Reson. 1, 1
�1965�.

10M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70, 101 �1998�.
11L. Diósi, Phys. Lett. A 132, 233 �1988�.
12L. Diósi, J. Phys. A 21, 233 �1988�.
13J. Dalibard, Y. Castin, and K. Molmer, Phys. Rev. Lett. 68, 580 �1992�.
14C. W. Gardiner, A. S. Parkins, and P. Zoller, Phys. Rev. A 46, 4363

�1992�.
15N. Gisin and I. C. Percival, J. Phys. A 25, 5677 �1992�.
16N. Gisin and I. C. Percival, J. Phys. A 26, 2245 �1993�.
17L. Diósi, N. Gisin, and W. T. Strunz, Phys. Rev. A 58, 1699 �1998�.
18A. Imamoglu, Phys. Lett. A 224, 3650 �1994�.
19L. Diósi and W. T. Strunz, Phys. Lett. A 235, 569 �1997�.
20M. W. Jack and M. J. Collet, Phys. Rev. A 61, 06216 �2000�.

FIG. 12. Real and imaginary part of the time average �denoted as T�*�� of
the absolute value of the noise �solid line with circles� and shift term �dotted
line with crosses� for different inverse temperatures 
. Only for very high
temperatures the time average of the shift is relevant in comparison to the
nonshifted noise.

1-10 de Vega et al. J. Chem. Phys. 122, 1 �2005�

  PROOF COPY 513513JCP  



  PROOF COPY 513513JCP  

  PRO
O

F CO
PY 513513JCP  

21J. D. Cresser, Laser Phys. 10, 1, �2000�.
22R. P. Feynman and F. L. Vernon, Ann. Phys. �N.Y.� 24, 118 �1963�.
23W. T. Strunz, Phys. Lett. A 224, 25 �1996�.
24W. T. Strunz �unpublished�.

25W. T. Strunz, Chem. Phys. 268, 237 �2001�.
26C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed. �Springer, Berlin,

2000�.

1-11 Non-Markovian stochastic Schroedinger equations J. Chem. Phys. 122, 1 �2005�

  PROOF COPY 513513JCP  


