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Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and
formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries
between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking
achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those
fundamental laws are now being established at the level of individual quantum systems, thus placing limits
on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which
are driven by heat rather than external work. We establish thermodynamic performance bounds for these
machines and investigate their quantum origin. We also show how those bounds may be pushed beyond
what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir
engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards
the technological exploitation of autonomous quantum refrigerators.

A
n absorption or heat-driven quantum refrigerator is a system capable of establishing a net steady-state
transport of energy from a cold bath (c) to a hot bath (h), assisted only by the residual heat coming from an
additional work reservoir (w)1–3. In this picture, the cold bath would play the role of the macroscopic or

mesoscopic object to be cooled. In addition to their potential technological applications, these autonomous
quantum-thermal devices are also appealing from the fundamental perspective, as they are naturally well suited
for the study of thermodynamics at the level of individual open quantum systems1,4–6.

In spite of the increasing interest that quantum absorption cooling has attracted over the last few years5,7–12, the
field is far from new. A heat-driven quantum fridge is just one specific configuration of the more general quantum
heat pump, that can function either as a heater, a chiller or even an engine. The use of three-level solid-state masers
as physical support for heat pumps was already discussed in the late 1950s13,14, when spin refrigeration was also
experimentally demonstrated15. The consistent quantum-thermodynamic description of these elementary three-
level prototypes was object of further study1,4 and, just recently, alternative finite-dimensional quantum systems
realising autonomous heat pumps have been put forward in the literature2,3.

The different designs of quantum heat pumps share limitations that can be understood from the assumptions
on their interactions with the environments. Under the familiar conditions usually met in the quantum-optical
regime, the dissipative processes may be assumed purely Markovian17–19, which severely restricts the performance
of any heat-driven device, and confers a distinctive spectral structure to the environmental fluctuations16. In
particular, once their steady state builds up, quantum heat pumps are governed by formal analogues of the laws of
thermodynamics and, as a consequence, their absolute efficiency ideally saturates to the corresponding Carnot
limits eC, albeit at vanishing ‘cooling power’14, i.e. in the reversible limit, the exchange of any finite amount of
energy with the heat baths is performed in infinite time.

For practical purposes, however, one needs to operate at nonvanishing power. In this case, the relevant issue to
assess the functionality of these devices demands the optimisation of more practical figures of merit such as the
efficiency at maximum cooling power e*. The natural question arises whether e* can approach eC arbitrarily
closely even at finite cooling power, or if, on the contrary, it is upper bounded by some fundamental limit. The
efficiency at maximum ‘mechanical’ power is extensively used to benchmark the operation of heat engines and a
lot of effort has been devoted to establish a universal upper bound therefor20–22. Unfortunately, the general
arguments used for engines do not provide simple bounds when the cycle is reversed into a refrigerator, and
consequently, a different approach is needed to arrive to model-independent performance bounds. Here, we
rigorously prove that the ‘smallest’ quantum absorption refrigerators, supported on ideal three-level masers, are
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limited in their efficiency at maximum power by a fraction of eC, only
related to the spectral properties of the environmental fluctuations at
low frequencies. We show that this general performance bound
applies as well to ‘larger’ and non-ideal designs2,3,8, as it is independ-
ent of the details of the working material of the refrigerator.

Achieving a good understanding of the quantum-mechanical ori-
gin of the limitations of heat pumps can also provide key clues about
how to surmount them. We show indeed that, by feeding an absorp-
tion fridge with engineered thermal resources, one can push its per-
formance bounds considerably further, allowing for classically
impossible superefficient quantum cooling. Namely, at given fixed
environmental temperatures, the addition of squeezing to the work
bath leads to efficiencies above eC and, most interestingly, to a sys-
tematic enhancement of the output harnessed power. This is
achieved strictly within the framework of quantum thermodynamics
and thus, in no violation of its laws6,23.

Results
Models of absorption refrigerator. As already advanced, a minimal
model of autonomous heat pump13 consists of a three-level system
with each of its transitions weakly coupled to one of the three
independent heat baths [see Fig. 1(a)]. Essentially, as the steady
state builds up, the ‘heat’ collected from the cold bath is dumped
into the hot bath with the assistance of the extra energy provided by
the work bath, which closes the cooling cycle. Of course, the opposite
heating cycle also takes place in the steady-state, and it is the
imbalance between these two stationary processes which renders
the device either a refrigerator or a heater. As we shall see below,
refrigeration occurs as long as the frequency of the transition coupled
to the cold bath remains below a certain threshold vc # vc,max

1.
We shall also consider the two-qubit design3,6 of Fig. 1(b) in which

the cold and the hot bath are each addressed through a two-level
contact, while the work reservoir introduces dissipation in the sub-
space {j0cæflj1hæ, j1cæflj0hæ}, where j0aæ and j1aæ stand for the
ground and excited states of contact a g {h, c}. This allows for energy
flows between the hot and cold ends, and eventually results in net
refrigeration. Remarkably, this fridge works within the same cooling
window (vc # vc,max) as the three-level prototype.

Finally, we shall comment on another model2,5,7 featuring three
contact qubits connected via a three-body interaction [see Fig. 1(c)].
Practically-oriented issues have been recently studied in connection
with this design, including its potential experimental realisations9,10

and the investigation of its efficiency at maximum power8.

The first and second laws. When the interaction of the working
material with the environments is sufficiently weak, one can tackle
its effective dynamics via a quantum master equation like

d
dt
%̂ tð Þ~ DwzDhzDcð Þ %̂ tð Þ: ð1Þ

It is an equation of motion for the reduced state of the heat pump %̂ tð Þ,
where Da are the dissipation super-operators associated with each
bath. An initial preparation r̂ 0ð Þ~%̂ 0ð Þ6aX̂T

a , factorised between
system and baths degrees of freedom is assumed. The intrinsic
dynamics has been eliminated by taking the interaction picture with
respect to the free Hamiltonian of the working material Ĥwm.

If the dissipation is much slower than both the environmental
fluctuations and the coherent evolution of the heat pump, the
Born, Markov and rotating-wave approximations may be safely
applied16. This leads to dissipation super-operators of the well known
Lindblad-Gorini-Kossakovski-Sudarshan (LGKS) type17,18, which
are the workhorse of quantum thermodynamics23. We shall specif-
ically denote them by La in what follows:

La%̂~
X

v

Cv,a Âa vð Þ%̂Â{
a vð Þ{ 1

2
Â{

a vð ÞÂa vð Þ,%̂
� �

z

� �
: ð2Þ

Here, {?, ?}1 stands for an anticommutator and Âa vð Þ, for the jump
operator associated with the decay process into channel v, which
occurs at a rate given by the corresponding element of the spectral
correlation tensor Cv,a. For equilibrium reservoirs, these latter relate
via the detailed balance condition16

C{v,a~e{�hv=kBTaCv,a: ð3Þ

Individually, each LGKS dissipator La generates a completely pos-
itive and trace preserving contractive dynamics of the working
material, converging towards its local stationary thermal state
t̂a! exp {Ĥwm

�
kBTa

� �
19. As time goes to infinity, this contractiv-

ity translates into (see Methods for details)

_Qw

Tw
z

_Qh

Th
z

_Qc

Tc
ƒ0, ð4Þ

where Ta are the equilibrium temperatures of the baths and
_Qa~tr ĤwmLa%̂ ?ð Þ

� �
represents the energy per unit time flowing

from bath a into the pump once in the steady state. In particular, we
will refer to _Qc as the ‘cooling power’ or just power.

Figure 1 | (a) Schematic representation of the three-level heat pump. The three independent baths are taken as infinite collections of uncoupled modes

with Hamiltonian ĤBa
~
X

mvmb̂{a,mb̂a,m. The dissipative interactions in each bath-transition pair are modeled by terms like e.g. Ĥint
c ~

ffiffiffi
c
p

0j i 1h jzð
1j i 0h jÞ6B̂c, with B̂a~

P
m ga,m b̂a,mzb̂{a,m


 �
. Here, the coupling constants ga,m are proportional to

ffiffiffiffiffiffi
vm
p

, which results in flat spectral densities, and the

parameter c controls the overall strength of the interaction16. The three-stroke cooling and heating processes are depicted with blue and red arrows

respectively. (b) Diagram of a two-qubit heat pump, where we shall always assume vh . vc. Energy transport between the two contacts is mediated by

dissipation into the work bath thanks to a coupling term of the form Ĥ int
w ~ 1cj i 0hh jz 0cj i 1hh jð Þ6B̂w

3
. (c) A design of heat pump with a contact qubit for

each bath. In this case, the working material is provided with an explicit three-body interaction term to allow for energy exchanges Ĥwm~Ĥ0zĤI , with

HI 5 g( | 1w0h1cæ Æ0w1h0c | 1 h.c.). The frequencies are constrained by vh 5 vc 1 vw
2.
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Since Ĥwm is time-independent, the stationarity of the average
energy at %̂ ?ð Þ implies

_Qwz _Qhz _Qc~0: ð5Þ

This balance equation plays the role of a first law in quantum ther-
modynamics as soon as one identifies the steady-state currents _Qa

with heat flows. Similarly, Eq. (4) can be regarded as a quantum-
thermodynamic statement of Clausius theorem, i.e. the second law.

The combination of Eqs. (4) and (5) places the ultimate ther-
modynamic bounds on the efficiency of a heat pump in its various
modes of operation14. For instance, in the chiller configuration (i.e.
_Qcw0, _Qww0 and _Qhv0), the efficiency is defined as the ratio of

the cooling power to the input heat (per unit time) provided by the
work bath, i.e. e: _Qc

�
_Qw. Using Eq. (5) to eliminate _Qh from Eq. (4),

yields

e~
_Qc

_Qw

ƒ

Tw{Thð ÞTc

Th{Tcð ÞTw
:eC, ð6Þ

where eC is nothing but the Carnot efficiency of a (macroscopic) heat
driven quantum absorption fridge operating between baths at tem-
peratures {Tw, Th, Tc}24.

The cooling window. We now want to delimit the region within the
space of parameters of a quantum heat pump where cooling is
permitted by the second law. This is of course highly model-
dependent but one can always stick to n-dimensional working
materials with the basic three-stroke cooling mechanism of the
three-level maser built in13. If the bath a couples to the heat pump
only allowing for transitions with a gap of �hva among the eigenstates
of Ĥwm, and if the resonance condition vh 5 vc 1 vw holds, one
should have

_Qa

�
_Qb

�� ��~va

�
vb: ð7Þ

This was already acknowledged as a distinctive feature of ideal three-
level heat pumps in the seminal paper by Geusic et al.14, and it is easy
to see that it remains true for the two-qubit design of Fig. 1(b). Eq. (7)
essentially says that in a cooling cycle, every single cold excitation is
traded for one hot excitation at the expense of consuming a single
work excitation7.

Hence, combining Eq. (4) with (7) yields
vw

Tw
{

vh

Th
z

vc

Tc
ƒ0

[ vcƒvc, max:
Tw{Thð ÞTc

Tw{Tcð ÞTh
vh:

ð8Þ

This inequality defines the ‘cooling window’. Note that the work
temperature Tw must be larger than Th (and Tc) in order to have a
positive vc,max.

In principle, the efficiency of any ideal heat pump satisfying Eq. (7)
saturates to the Carnot bound in the reversible limit of vc R vc,max,
i.e. when the contact transitions locally equilibrate with their corres-
ponding baths so that the equality in Eq. (4) holds.

On the contrary, the operation of a heat pump might become
intrinsically irreversible if additional mechanisms of energy
exchange were present. For instance, the three-qubit device of
Fig. 1(c) only behaves as an ideal heat pump when the effects of
the global interaction term ĤI on the dissipative dynamics are
entirely neglected [see caption of Fig. 1(a)]. Indeed, explicit analytical
formulas for its steady state consistent with Eq. (7) may be written
down in that limit7. However, since the contact transitions are chosen
among the eigenstates of Ĥ0 rather than those of Ĥwm~Ĥ0zĤI ,
dissipation is always strictly ‘delocalised’ regardless of the interaction
strength, and neither Eq. (7), nor the equality in Eq. (4) can be

satisfied. Consequently, this specific design is an example of non-
ideal heat pump, as it is unable to reach the Carnot efficiency8.

Efficiency at maximum cooling power: a model-independent
bound. In spite of its fundamental importance, the attainability of
the Carnot efficiency in microscopic quantum heat pumps7,11 is not
the central issue for practical applications. Indeed, when operating at
the reversible limit the power exactly vanishes.

One would like instead to run a refrigeration cycle, carefully tun-
ing the design parameters so that efficiency and power are maximised
jointly, pretty much in the spirit of finite-time thermodynamics. The
practically relevant questions would then be whether there exists a
tight upper bound for the efficiency at maximum power e* other than
eC, and whether such bound is model-independent. Long-standing
problems of this sort have been intensively studied in classical mac-
roscopic heat engines and refrigerators20–22,25,26, as well as in their
quantum-mechanical counterparts27–33. In particular, a specific bound
for e* has been recently established for the model of Fig. 1(c) based
on a numerical analysis, together with design prescriptions for its
saturation8.

In this paper, under natural assumptions on the environmental
fluctuations, we prove analytically that the efficiency at maximum
cooling power of any ideal fridge made up of elementary three-level
heat pumps is tightly upper bounded by

e�ƒ
dc

dcz1
eC, ð9Þ

where dc stands for the spatial dimensionality of the cold bath. This
applies directly to the ideal absorption refrigerators of Figs. 1(a) and
1(b), but we verify that Eq. (9) holds as well for the non-ideal refri-
gerator of Fig. 1(c), thus validating and generalising the bound
obtained in8. Eq. (9), which is the first main result of this paper,
establishes then a quantum-thermodynamic limitation which holds
for all the models of quantum absorption fridges existing in current
literature, and is manifestly independent of the details of the working
material of the refrigerators. While full details are deferred to the
Methods section, we sketch a proof of the bound in what follows.

One may generically characterise the dissipation into a d-dimen-
sional free bosonic field a at thermal equilibrium with flat spectral
density, by decay rates of the form16

Cv,a~
c0vda 1zNa vð Þð Þ vw0

c0 vj jda Na vj jð Þ vv0

(
, ð10Þ

where Na vð Þ~ exp �hv=kBTað Þ{1½ �{1. Eq. (10) follows just from the
application of the Born and Markov approximations to a general
microscopic model of relaxation into a bosonic bath. From it, one
can see that the cooling power of a three-level fridge [Fig. 1(a)] writes
as

_Qc xð Þ~xdc p xð Þ a1e{b1x{a2e{b2x
 �

, ð11Þ

where x ; vc/vc,max, ai and bi are positive real constants, and p(x) is a
positive function. The cooling power vanishes at both edges of the
cooling window _Qc 0ð Þ~ _Qc 1ð Þ~0 and is a concave function of x. Eq.
(11) can always be conveniently recast as

_Qc xð Þ~P xð Þ xdc 1{xð Þ:P xð Þf xð Þ, ð12Þ

with P(x) again a positive function (see Eq. (41) in Methods). The
maximum of _Qc xð Þ is attained at some x* such that

_Q’c x�ð Þ~P’ x�ð Þf x�ð ÞzP x�ð Þf ’ x�ð Þ~0, ð13Þ

where the prime denotes differentiation with respect to x. Note that
the positive and concave function f(x) is maximised precisely at x 5

dc/(dc 1 1).

www.nature.com/scientificreports
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Previous literature on performance bounds for heat engines has
established that the efficiency at maximum power is maximised in
the limit of small eC

21,34, as it is also the case for quantum absorption
fridges8. We shall therefore expand P(x) around eC R 0, where in fact
P(x) , p(x) [see Eq. (41)], and study its analytical properties. We
then prove the claim by reductio ad absurdum. Let us first assume
that x* . dc/(dc 1 1), so that the bound in Eq. (9) would not hold
[recall Eqs. (7) and (8)]. P9(x) has at most one root in the interval x g
[0, 1] and can be seen to be negative in the neighbourhood of x 5 dc/
(dc 1 1), for vanishing eC. Being both P(x) and f(x) positive in the
whole unit interval, the violation of the bound Eq. (9) would contra-
dict Eq. (13). Therefore, one must have instead x* # dc/(dc 1 1) and
hence,

e�~
vc,�
vw

ƒ

dc

dcz1
eC, ð14Þ

the bound being saturated if P9(x*) 5 0.
Now, we shall consider the two-qubit model [Fig. 1(b)]. We find

that its steady-state heat currents can be broken up as (see Methods
for details)

_Qc~vc q1zq2ð Þ ð15aÞ

_Qh~{vh q1zq2ð Þ ð15bÞ

_Qw~vw q1zq2ð Þ, ð15cÞ

where all qi . 0. There are two contributions to the total heat fluxes,

namely _Q 1ð Þ
a

��� ���~vaq1 and _Q 2ð Þ
a

��� ���~vaq2, which individually satisfy

the first and second law of Eqs. (5) and (4) within the cooling window

delimited by Eq. (8). Furthermore, _Q ið Þ
a

.
_Q ið Þ
b

��� ���~va

�
vb for i 5 {1,

2} and hence, each three-level component behaves as an ideal refri-

gerator on its own. Most importantly, the cold fluxes _Q ið Þ
c have the

same analytic structure of Eq. (11), so that their efficiency at max-

imum power is limited by e ið Þ
�

.
eCƒdc= dcz1ð Þ. As a consequence,

the performance of the combination of the two is also bounded by eC

dc/(dc 1 1), since

e�~
e 1ð Þ x�ð Þ _Q 1ð Þ

w x�ð Þze 2ð Þ x�ð Þ _Q 2ð Þ
w x�ð Þ

_Q 1ð Þ
w x�ð Þz _Q 2ð Þ

w x�ð Þ
ƒ

dc

dcz1
eC: ð16Þ

The heat currents of the three-qubit fridge [Fig. 1(c)] are much more
involved analytically. However, extensive numerical evidence con-
firms that Eq. (9) also applies to this case8 [see Fig. 2(c)].

A numerical investigation, presented in Fig. 2, certifies that the
bound of Eq. (9) is tight for all the three models. One can further see
that choosing vw=Tw,h=1 is a sufficient condition to approach it
closely under large temperature differences Tc=Th=1. These are to
be regarded as analytical design prescriptions for the practical imple-
mentation of optimal quantum heat pumps, e.g. following recent
proposals involving superconducting qubits or arrays of quantum
dots9,10. Note as well that the limit Tc=Th=1 also implies e�veC=1,
as should be expected.

Our bound has been analytically established as a constraint on the
performance of the fridge operation mode of the three-level maser
and that of any ideal absorption refrigeration cycle reducible to three-
level systems, and it has been also shown to hold for fundamentally
different non-ideal devices. It is in order to remark, however, that Eq.
(9) has in fact a general validity transcending specific models. Let us
consider a totally generic model of quantum absorption fridge: We
can always write the leading contribution to its cooling power _Qc as a
sum of terms of the form

_Qc*�hvc
:
vc

:
vw

;
vh

{ ;
vc

;
vw

:
vh


 �
, ð17Þ

where :;
va

stands for excitation/relaxation rates of the contact tran-
sitions at va. Eq. (17) just formalises the imbalance between the
elementary three-stroke cooling and heating cycles which has to
underly any implementation of quantum absorption cooling, and
contains no details on the specific working material of the refriger-
ator, nor about the spectral properties of the reservoirs to which it
couples. Given that these three reservoirs are in thermal equilibrium,
we can make use of the detailed balance condition of Eq. (3) and thus
arrive to

_Qc*�hvc P
a

;
va

e{ �hvc
kB Tc e{ �hvw

kBTw{e{
�hvh

kB Th

� �
, ð18Þ

Figure 2 | Histograms of the efficiency at maximum power e*/eC for ,105 random (a) three-level, (b) two-qubit and (c) three-qubit absorption fridges, as

introduced in Figs. 1(a), 1(b), and 1(c), respectively. The temperatures {Ta}, the hot frequency vh, the dissipation rates, and–-for the case (c)–the

interaction strength g, were all chosen completely at random, but always respecting the conditions c=kBTa and c= �hva,gf g, that guarantee the

applicability of the master equation Eq. (1). In each case, we found the optimal pair {vw, vc} so that _Qc was maximised, and computed the corresponding

efficiency. This is equivalent to a global numerical optimisation of e* over all free parameters of the models. In each of the panels above, we show three data

sets that correspond to the same heat pump operating between 1d, 2d and 3d baths. In agreement with Eq. (9), e* is bounded by
1
2

eC ,
2
3

eC and
3
4

eC ,

respectively. It can also be seen that these bounds are tight, and that the majority of randomly sampled fridges cool very close to their corresponding

bounds.
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which is formally identical to Eq. (11), with the positive function
p xð Þ!Pa

;
va

xð Þ
�

xdc{1. Therefore, the whole line of reasoning
between Eqs. (11)–(14) is still applicable, provided that the condition
p9(x*) # 0 is verified. This weak assumption is sufficient for Eq. (9) to
hold, regardless of the physical support of the refrigerator and the
specific properties of the baths. Under these premises, we conclude
that our bound is model-independent for quantum absorption
refrigerators.

Let us eventually connect this result with the other known bounds
from finite-time thermodynamics. In the seminal work by Curzon
and Ahlborn20, an upper limit to the efficiency at maximum power
was derived for a Carnot engine under the endoreversible approxi-
mation35. In spite of its seemingly limited scope, such bound succeeds
in capturing the universal behaviour of e* at small efficiencies21,34,
and recurrently appears in different models of heat engines22,27,31,34,36,
including the three-level maser in its engine configuration34.
However, the obtention of similar results for refrigerators would
require a more careful phenomenological modeling of their main
sources of irreversibility, and can lead to highly model-dependent
performance bounds37–39.

In analogy with the Curzon-Ahlborn limit, our result in Eq. (9)
accurately represents e* at low efficiencies for all embodiments of
quantum absorption refrigerators, which encompass fundamentally
different models. The same limit holds as a strict upper bound to the
efficiency at maximum power of ‘classical’ endoreversible absorption
chillers39. It must be noted as well, that it relies on a consistent
microscopic description of the system-baths interactions rather than
on a phenomenological ansatz. From the physical point of view, such
a model-independent bound can be understood from the intuitive
notion that the maximisation of the cooling power in the steady state
must be governed by the low-frequency dependence of the corres-
ponding cold decay rate [see Eq. (10)].

Superefficiency: squeezing the second law. Up to now, we have seen
how the standard laws of thermodynamics place fundamental
constraints on heat pumps, even when they are made up of a
single finite-dimensional open quantum system. This is perhaps
not surprising taking into account that there is nothing really
‘quantum’ about the operation of these devices, other than the
discreteness of their energy spectra8. For instance, the ideal fridges
of Figs. 1(a) and 1(b) operate in completely classical (diagonal)
steady states, while the quantum coherence that builds up
asymptotically in the non-ideal fridges of Fig. 1(c) does not seem
to affect their performance in any crucial way. Even if steady-state
bipartite entanglement may exist in this case, it usually appears only
in the regime of very low efficiencies and vanishing cooling power11.
Likewise, other types of quantum correlations, though widely
present, do not have any influence on optimal cooling8.

Is it then possible at all for quantum heat pumps to operate past the
‘classical’ limits? Ideally, one would like to devise tricks to push their
performance bounds further, of course remaining always within the
standard framework of quantum thermodynamics and not advoc-
ating any violation of its laws. We shall devote this section to illus-
trate how one can indeed go beyond Eqs. (6) and (9), by exploiting
non-equilibrium environmental features that can be mimicked with
suitable quantum reservoir engineering techniques.

The whole idea would consist in initialising the work reservoir in a
squeezed-thermal state

X̂T,r
w :Ŝ jð Þ X̂T

w Ŝ{ jð Þ: ð19Þ

Such a state results from the action of the unitary squeezing oper-
ator40

Ŝ jð Þ:P
m

exp
1
2

j�b̂2
m{

1
2

j b̂{m


 �2
� �

ð20Þ

on a thermal preparation X̂T
w , where b̂m,b̂{m

n o
stand for creation and

annihilation operators on mode m of the work reservoir. The para-
meter j ; r exp ih is in general a complex number, although for our
purpose we can set the phase h to zero and consider a real squeezing
parameter j~r[R. The quantumness of a squeezed state resides in
the asymmetry of the variances of its field quadratures X̂m

+~b̂m+b̂{m,

as opposed to a (classical) coherent state, for which DX̂m
z~DX̂m

{.
It is well known that squeezed states, even in absence of entan-

glement, allow for quantum enhancement in several applications
of information theory41, including quantum cryptography42, and
most notably precision measurements43 and quantum metrology
below shot noise44, with applications e.g. for gravitational wave
interferometry45–47.

The key property to be exploited here is the non-stationarity of
squeezed preparations. This results in a periodic time modulation of
the correlation functions of the work reservoir, which is somewhat
equivalent to the action of an external driving on the heat pump. In
this sense, the work reservoir may now play an active role in the
cooling process. As we shall now see, this is achieved without com-
promising the thermodynamic consistency of the whole setting.

In order to account for the squeezing of the work reservoir, the
quantum master equation Eq. (1) must be replaced by

d
dt
%̂ tð Þ~ r

wzLhzLc
 �

%̂ tð Þ, ð21Þ

where the modified work dissipator r
w:Lr

wzDLr
w can be cast in

the standard LGKS form16 (see Methods for details).
Clearly, if the work heat current is suitably redefined as

_Qw~tr Ĥwm
r
w%̂ ?ð Þ

� �
, the asymptotic stationarity of energy

implies again the first law as stated in Eq. (5).
However, the dissipator r

w will not generally bring the corres-
ponding contact transition to thermal equilibrium at temperature
Tw, but to some other steady state ŝw rð Þ. Still, the LGKS form of
the overall generator of the dynamical map in Eq. (21) guarantees its
full contractivity19, so that the second law generalises to

{tr r
w%̂ ?ð Þ log ŝw rð Þ

� �
z

_Qh

Th
z

_Qc

Tc
ƒ0: ð22Þ

It is convenient to fit ŝw rð Þ by a thermal state of the form
ŝw rð Þ! exp {Ĥwm

�
kBTef f

w rð Þ
� �

, with a suitable squeezing-depend-

ent work temperature Tef f
w rð Þ. Since the contact with the work res-

ervoir only involves two levels, this is always possible. Eq. (22) may be
thus rewritten in the more familiar way

_Qw

Tef f
w rð Þz

_Qh

Th
z

_Qc

Tc
ƒ0: ð23Þ

For any r . 0, the effective temperature Tef f
w rð Þ exceeds Tw, and it

diverges for r R ‘. Therefore, the generalised squeezed-dependent
Carnot efficiency will always exceed its classical value

eC rð Þ~ Tc

Th{Tc
1{

Th

Tef f
w rð Þ

� �
weC 0ð Þ: ð24Þ

Note that, as should be expected, in the limit of r R ‘, Eq. (24)
saturates to the maximum efficiency of a power-driven refrigerator
(i.e. a reversed heat engine) eC(‘) 5 Tc/(Th 2 Tc)14.

Hence, we have demonstrated how, for a given set of thermal
resources {Tc, Th, Tw}, classically forbidden superefficient quantum
absorption cooling may be realised by just squeezing the work res-
ervoir. This is illustrated in Fig. 3, with a set of performance char-
acteristics corresponding to different environmental squeezing
parameters in the three-level maser heat pump of Fig. 1(a).
Perhaps even more remarkable than the seemingly counter-intuitive
possibility of cooling above the classical efficiency threshold, is the
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fact that the efficiency at maximum power and the cooling power
itself systematically increase jointly with the squeezing parameter.
This is a striking consequence of the non-equilibrium environmental
fluctuations.

In the macroscopic domain, the practical drawbacks of an absorp-
tion chiller48, as compared to an equivalent work-driven refrigeration
cycle, are typically its much lower efficiency and output power.
Nevertheless, as we can see in Fig. 3, a quantum-enhanced heat-
driven fridge does not only outperform its purely thermal counter-
part, but is also capable of approaching very closely the performance
of a Carnot fridge, when provided with a finite amount of envir-
onmental squeezing. Thus, as opposed to the classical case, quantum
absorption cooling may compete on an equal footing with conven-
tional refrigeration, when combined with reservoir engineering tech-
niques49–51 to allow for the exploitation of non-equilibrium squeezed
environmental fluctuations. This observation could be a promising
first step towards a number of applications of heat-driven refrigera-
tion to a new generation of quantum and nanoscale technologies.

Discussion
Let us start by summarising the two main results of this paper. On the
one hand, we proved that the efficiency at maximum power of all the
known models of quantum absorption refrigerator (both ideal and
non-ideal) is tightly upper bounded by a fraction of the Carnot
efficiency eC, which is independent of the details of the device and
only relates to the spectral properties of the thermal fluctuations of
the environment. On the other hand, we showed most remarkably
how by squeezing the heat source that drives an absorption cooling
cycle, one may boost its performance to the extent of making it
comparable to a conventional power-driven cooling device.

A key path to the optimisation of autonomous quantum heat
pumps is thus found to reside in applying suitable reservoir

engineering techniques49–51 rather than in exploiting any resource
intrinsic to their quantum mechanical working materials8,11.
Indeed, the importance of reservoir manipulation has been very
recently acknowledged in the context of quantum thermodyn-
amics: It has been recently speculated that superefficient opera-
tion of quantum heat engines, in apparent violation of the second
law, may be achieved e.g. by reservoir squeezing52 or using more
general types of non-equilibrium reservoirs53,54, and by connect-
ing the working material to an adiabatically isolated ancilla55.
However, to our knowledge, this paper represents the first
demonstration of a systematic enhancement in the performance
of a quantum-mechanical thermal device. Furthermore, this
unconditional enhancement is, in principle, achievable without
manipulating the working material or the given hot and cold
baths: It is only the arguably controllable heat source that needs
to be tailored.

At this point, one could wonder if generating squeezing in the
work reservoir is really worth the effort when one could raise instead
its equilibrium temperature to obtain effectively the same results.
Back to Fig. 3, we see that a squeezing parameter of r 5 1.5
(,13 dB, which is currently at reach45), would already take the heat
pump close to its best equivalent power-driven counterpart. In order
to achieve a comparable amplification without squeezing, one should
increase the work temperature by at least one order of magnitude,
which might just not be possible in engineered or natural environ-
ments. Thus, it seems reasonable that in many concrete situations,
reservoir squeezing could be indeed the best and most natural way to
boost the performance of a heat-driven fridge. However, supporting
the claim that a quantum-enhanced absorption refrigerator can
really compete with a heat pump driven by work is a more delicate
issue: To mimic a non-stationary state for the work bath49–51, one has
pay an extra cost that should be added to the overall efficiency bal-
ance for a fair comparison. Again, depending of the specifics of the
implementation, it may well be that a quantum-enhanced quantum
absorption chiller came to cool cheaper than the corresponding
quantum ‘compression’ cycle. Furthering this issue demands a study
on its own.

We also wish to make clear the realm of validity of our analysis. In
all of the above, we have taken the fulfilment of the first and second
laws as a guarantee of thermodynamic consistency, but we have
neither discussed the third law, nor probed the neighbourhood of
the absolute zero6. Since we approach the open system dynamics
from a LGKS-type master equation, the Markov approximation
should better hold, which in turn implies that the thermal fluctua-
tions must be sufficiently fast as compared with the dissipation time
scales. Thus, to be always on the safe side, we must limit our envir-
onmental temperatures from below.

When it comes to the experimental realisation of quantum-
enhanced absorption technologies it is worth mentioning the pio-
neering refrigeration experiments by Geusic et al.15 using the energy
level structure of Cr31 ions in a ruby crystal as support for a three-
level maser. As already mentioned, detailed proposals exist as well for
the non-ideal three-qubit model of Fig. 1(c) using superconducting
qubits9, and quantum dots10. The squeezing can be engineered by
coherently driving the work transition, potentially involving auxili-
ary levels and vacua; feasible schemes have been proposed e.g. invol-
ving trapped ions or Rydberg atoms49–51.

In conclusion, we have demonstrated the possibility of genuine
quantum-enhanced absorption refrigeration beyond the fun-
damental bounds imposed by classical thermal environments. The
application of reservoir engineering techniques to autonomous
quantum heat pumps might render them practically useful and com-
petitive for many applications of quantum technologies, in primis
quantum cooling. Moreover, the distinctive simplicity of these
devices is ideal to get a clean glimpse of how thermodynamics looks
like beyond the standard scenario.

Figure 3 | Parametric plot of power vs. efficiency of a three-level maser
operating between three-dimensional bosonic reservoirs at temperatures
Tw 5 170, Th 5 80 and Tc 5 30 (�h 5 kB 5 1), for different values of the
squeezing parameter of the work reservoir r 5 {0, 0.5, 1, 1.5, 2}. Both _Qc, e*
and the maximum e increase with r. In each curve, the hot frequency was

fixed at vh 5 50, while vc ranges from 0 up to vc,max(r). The frontier

between the white and the shaded region corresponds to the performance

characteristic of an ideal reversed heat engine operating between the same

hot and a cold baths. The general behaviour illustrated here is totally

independent of the specific values of vh and the set of temperatures {Ta}.
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Methods
Quantum master equation. We will now write down explicitly the equation of
motion for the working material of a quantum heat pump, introduced in Eqs. (1) and
(21). The total Hamiltonian is generically (see caption of Fig. 1)

Ĥ~Ĥwmz
X

a

ĤBa
z
X

a

Ĥint
a , ð25Þ

where the dissipative system-reservoir interactions Ĥint
a may be taken as

Ĥint
a ! 0aj i 1ah jz 1aj i 0ah jð Þ6B̂a:ŝa6B̂a: ð26Þ

Here, the ground and excited states of the two-level contact port with bath
a are denoted by j0aæ and j1aæ respectively. Let us first assume that all three
reservoirs are prepared in thermal equilibrium. Under the further assumptions of
vanishing initial correlations between system and environments, weak system-
environment interaction and separation of time scales of free and dissipative
dynamics (Born, Markov and rotating-wave approximations), one arrives to the
well known LGKS-type quantum master equation16 with dissipators as those of
Eq. (2).

The elements of the spectral correlation tensor, given explicitly in Eq. (10),
follow from the power spectrum of the environmental correlations

Cv,a~2Re
ð?

0
ds eivs B̂{a tð ÞB̂a t{sð Þ

D E
. On the other hand, Âa vð Þ result from the

decomposition of ŝa as eigenoperators of Ĥwm
16, and the discrete index v labels all the

open decay channels, i.e. all the energy differences that correspond to non-vanishing
jump operators.

In the case of an ideal fridge, for which j0aæ and j1aæ are picked among the eigen-
states of Ĥwm, Eq. (1) rewrites as

d%̂
dt

~
X

a

X
v[V

Ca,v ŝ{
a %̂ŝz

a {
1
2

ŝz
a ŝ{

a ,%̂
� �

z
z

�

e{�hv=kB Ta ŝz
a %̂ŝ{

a {
1
2

e{�hv=kB Ta ŝ{
a ŝz

a ,%̂
� �

z

�
,

ð27Þ

where ŝz
a ~ 1aj i 0ah j and ŝ{~ ŝzð Þ{ and the inner summation runs over the

frequencies V 5 {vw, vh, vc}. Eq. (27) accounts for the reduced dynamics of the
three-level and two-qubit heat pumps of Figs. 1(a) and 1(b). The case of the non-ideal
three-qubit model of Fig. 1(c) is more involved. All the details may be found
elsewhere8.

Let us now relax the assumption of equilibrium environments to allow for
squeezing in the work reservoir. The key difference is that the rates Ca,v become
explicitly time-dependent as a consequence of the non-stationarity of squeezed pre-
parations. After performing the rotating-wave approximation, new terms appear in
the work dissipator16, that becomes

r
w~Lr

wzDLr
w~

X
v

Cr
w,v Âw vð Þ%̂Â{

w vð Þ{ 1
2

Â{
w vð ÞÂw vð Þ,%̂

� �
z

� �

zLr
w,v Âw vð Þ%̂Âw vð ÞzÂ{

w vð Þ%̂Â{
w vð Þ


{Âw vð Þ2%̂{%̂Â{

w vð Þ2
�
,

ð28Þ

where the squeezing-dependent coefficients Cr
w,v and Lr

w,v are given by

Cr
w,v~

c0vdw Nr
w vð Þz1

 �
vw0

c0 vj jdw Nr
w vj jð Þ vv0

(
ð29aÞ

Lr
w,v~

1
2

c0 vj jdw Mr
w vj jð Þ, ð29bÞ

with Nr
w vð Þ~Nw vð Þcosh 2rz sinh r2 and Mr

w~sinh 2r 2Nw vð Þz1ð Þ=2. A new set
of jump operators can always be found so that the work dissipator in Eq. (28) takes the
standard LGKS form of Eq. (2), which in turn, guarantees that the effective dynamics
of the working material remains that of a dynamical semigroup (i.e. completely
positive and trace-preserving) in spite of the squeezing17.

The second law at steady state. It is known that the entropy production of a
dynamical semigroup is a strictly positive quantity19. It is defined as

X
%̂ tð Þ½ �:{

d
dt

S %̂ tð Þjj%̂0
 �

§0, ð30Þ

where S %̂jj%̂0
 �

~tr %̂ log %̂{log %̂0
 �� �

is the quantum relative entropy and %̂0 is a
steady state of the dissipative dynamics. Each of the dissipators appearing in Eq. (1)
individually satisfies the inequality

tr La%̂ð Þlog %̂0
a

� �
{tr La%̂ð Þlog %̂½ �§0, ð31Þ

where %̂0
a is now stationary to the local dissipator La alone, i.e. La%̂

0
a~0. Now,

summing Eq. (31) over a yields

X
a

tr La%̂ð Þ log %̂0
a

� �
z

d
dt

S %̂ð Þ§0, ð32Þ

where S %̂ð Þ~{tr %̂ log %̂½ � stands for the von Neumann entropy. We may replace %̂ in
Eq. (32) with the steady state of the full dynamics %̂ ?ð Þ, and the local steady states %̂0

a ,

with equilibrium states e{Ĥwm=kBTa . Note that indeed Lae{Ĥwm=kB Ta ~019. We thus
obtain

{
X

a

tr ĤwmLa%̂ ?ð Þ
� �

kBTa
§0[

_Qw

Tw
z

_Qh

Th
z

_Qc

Tc
ƒ0, ð33Þ

that is, we recover the second law as stated in Eq. (4). When the work reservoir is
prepared in a squeezed thermal state, the derivation remains exactly the same, only
replacing Tw with the squeezing-dependent effective temperature52

Tef f
w rð Þ~ �hvw

kB log
tanh2rzexp �hvw=kBTw

1ztanh2r exp �hvw=kBTw

§Tw: ð34Þ

Tef f
w rð Þ is such that r

we{Ĥwm=kBTef f
w rð Þ~0. This leads to the modified second law of

Eq. (22).

Efficiency at maximum power of a three-level fridge. We will devote this section to
prove the ultimate bound e* # dc/(dc 1 1)eC on the efficiency at maximum power for
the three-level prototype of absorption refrigerator of Fig. 1(a). From Eq. (27), the
steady state of the three level system may be readily found to be

%11 ?ð Þ~CvcCvw zCvcCvh zC{vwCvh

D
ð35aÞ

%22 ?ð Þ~C{vhCvw zC{vcCvw zC{vcCvh

D
ð35bÞ

%33 ?ð Þ~C{vhCvc zC{vhC{vw zC{vcCvw

D
: ð35cÞ

Here, the ground, first and second excited states of Ĥwm are labeled j1æ, j2æ and j3æ
respectively and all coherences asymptotically vanish. Cva is a shorthand for Ca,va

and the denominator D is given by

D~CvcCvw zC{vhCvw zC{vcCvw zCvcCvh zC{vwCvh

zC{vcCvh zC{vhCvc zC{vhC{vw zC{vcC{vw :
ð35dÞ

Combining the excitation and relaxation rates C{vc ,Cvc , of the cold transition with
its steady-state populations %11 (‘), %22 (‘) one obtains a stationary heat current _Qc

given by

_Qc~vc C{vc%11 ?ð Þ{Cvc%22 ?ð Þð Þ

~vc
CvhC{vwC{vc {C{vhCvwCvc

D
,

ð36Þ

which, using the detailed balance relations, becomes (from now on we will set �h 5 kB

5 1)

_Qc~vcCvhCvwCvc

e{vc=Tc e{vw=Tw {e{vh=Th

D
: ð37Þ

Given the constraint vh 5 vc 1 vw, we may fix the values of {vw, Tw, Th, Tc} and take
x:vc= vweCð Þ as the only independent variable in Eq. (37). Of course, one would
obtain the same results by fixing vh instead of vw. This brings us back to Eq. (11)

_Qc xð Þ~xdc p xð Þ a1e{b1x{a2e{b2 x
 �

, ð38Þ

where a1~e{vw=Tw , a2~e{vw=Th , b1~vweC=Tc, b2~vweC=Th and p(x) is positive.
As already mentioned, the cold heat current _Qc xð Þ is concave and positive in the unit
interval, vanishing at the boundaries _Qc 0ð Þ~ _Qc 1ð Þ~0.

Let us take a closer look to g zð Þ:zdc a1e{b1z{a2e{b2z
 �

. Its analytic continuation
into the complex plane has, in addition to its zeroes on the real axis, the following
complex roots

zn~1z
2pi ThTw

vw Tw{Thð Þ n n[Z\ 0f g: ð39Þ

By applying the Hadamard factorisation theorem56, one may conveniently rewrite
g(z) as

g zð Þ~zdc ae{cz 1{zð Þ
sinh

1{z
2

vw
Tw{Th

Tw{Th

� �

1{zð Þsinh
vw

2
Tw{Th

TwTh

� � , ð40Þ
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with a,c[Rz . In particular, c 5 vweC(Tc 1 Th)/2TcTh. Back into the real axis, _Qc xð Þ
becomes

_Qc xð Þ~ ae{cxp xð Þsinh 1{xð Þ
1{xð Þsinh

xdc 1{xð Þ, ð41Þ

that is, we recover Eq. (12) by identifying the first factor in the r.h.s with the positive
function P(x). The dimensionless constant is defined as : Tw{Thð Þvw=2TwTh .
From there, the performance bound e* , dc/(dc 1 1) follows without difficulties [see
Eqs.(12)–(14)]. Note that, the fact that P9(x) has at most one zero in the unit interval
follows from the concavity of _Qc xð Þ.

From Eq. (41), one sees that taking eC R 0 yields P(x) , p(x), while p(x) itself tends
to the constant value _Qc x�ð Þ: That is, _Qc xð Þ

�
_Qc x�ð Þ*xdc 1{xð Þ:f xð Þ. To probe

this limit, one can just expand P(x) around eC R 0 and take its derivative with respect
to x at x 5 dc/(dc 1 1). This yields

P’ xð Þ x~ dc
dcz1

��� ~cosh {cosh
1{dcð Þ
dcz1

� �
{

2dc sinh

dcz1ð Þ2
zO edcz2

C


 �
, ð42Þ

which is a strictly negative function of . Consequently, P9(x) # 0 at x 5 dc/(dc 1 1) for
eC R 0. Indeed, it can be seen that P9(x) # 0 ; x g (0, 1) in this limit.

Three-level breakup of the two-qubit fridge. We shall finally show how the two-
qubit fridge of Fig. 1(b) can be broken up into two coupled three-level masers. As a
consequence, following the steps of the preceding section, one can prove that the
performance bound of Eq. (9) also applies to the two-qubit refrigerator.

Let us denote the eigenstates of the working material Ĥwm by {j0h0cæ, j0h1cæ, j1h0cæ,
j1h1cæ}, with energies {0, vc, vh, vh 1 vc}. The cold bath couples locally to the cold
qubit [see Fig. 1(b)] and thus, it only drives the transitions j0h0cæ « j0h1cæ and j1h0cæ
« j1h1cæ. On the other hand, the hot bath is connected to j0h0cæ « j1h0cæ and j0h1cæ
« j1h1cæ, while the work reservoir operates in the subspace j0h1cæ « j1h0cæ [see
Fig. 4].

Intuitively, one can already see that the two-qubit fridge is comprised of two
elementary three-level masers sharing the work transition. To make this statement
more precise, let us write down explicitly the stationary heat currents

_Qc~vc 0h1ch jLc%̂ ?ð Þ 0h1cj iz 1h1ch jLc%̂ ?ð Þ 1h1cj ið Þ
_Qh~vh 1h0ch jLh%̂ ?ð Þ 1h0cj iz 1h1ch jLh%̂ ?ð Þ 1h1cj ið Þ
_Qw~vw 1h0ch jLw%̂ ?ð Þ 1h0cj i,

where vw 5 vh 2 vc (vh . vc). From here, we can recover Eqs. (15) by just defining

q1~ 0h1ch jLc%̂ ?ð Þ 0h1cj i~{ 1h0ch jLh%̂ ?ð Þ 1h0cj i
q2~ 1h1ch jLc%̂ ?ð Þ 1h1cj i~{ 1h1ch jLh%̂ ?ð Þ 1h1cj i

q1zq2~ 1h0ch jLw%̂ ?ð Þ 1h0cj i:

As already pointed out, within the cooling window vc # vc,max, the heat currents of

each of the two three-level components _Q ið Þ
a behave as those of two ideal fridges,

individually satisfying the first and the second laws of Eqs. (5) and (4). Closed

formulas for _Q 1ð Þ
c and _Q 2ð Þ

c , analogous to Eq. (37), may be obtained from the steady-
state solution of Eq. (27), namely

_Q ið Þ
c ~vc

~Ci
vc

~Ci
{vw

~Ci
{vc

{~Ci
{vh

~Ci
vw

~Ci
vc

~Di

~vcZi
01Zi

10
CvhC{vwC{vc {C{vhCvwCvc

~Di

,

ð43Þ

where

~C1
vc

~Z1
01Cvc ,

~C1
{vc

~C{vc ð44aÞ

~C1
vh

~Z1
10Cvh , ~C1

{vh
~C{vh ð44bÞ

~C1
vw

~Z1
10 Cvw za1CvhC{vcð Þ ð44cÞ

~C1
{vw

~Z1
01 C{vw za1C{vhCvcð Þ ð44dÞ

and

~C2
vc

~Z1
01C{vc ,

~C2
{vc

~Cvc ð45aÞ

~C2
vh

~Z2
10C{vh , ~C2

{vh
~Cvh ð45bÞ

~C2
vw

~Z2
10 C{vw za2C{vhCvcð Þ ð45cÞ

~C2
{vw

~Z2
01 Cvw za2CvhC{vcð Þ: ð45dÞ

The denominator ~Di has the same form of Eq. (35d), only replacing Cva
with ~Ci

va
.

The remaining constants in Eqs. (44) and (45) are

a1~ Cvh zCvcð Þ{1, a2~ C{vh zC{vcð Þ{1

Z1
01~

Cvh zCvc

Cvh zCvc zC{vh

, Z1
10~

Cvh zCvc

Cvh zCvc zC{vc

Z2
01~

C{vh zC{vc

C{vh zC{vc zCvh

, Z2
10~

C{vh zC{vc

C{vh zC{vc zCvc

:

It is clear that both _Q 1ð Þ
c and _Q 2ð Þ

c can be cast in the generic form of Eq. (38), so that
their associated efficiencies at maximum power must be bounded by
e ið Þ
� vdc= dcz1ð Þ.
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