
PHYSICAL REVIEW A 84, 012114 (2011)

Decoherence of a quantum harmonic oscillator monitored by a Bose-Einstein condensate
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We investigate the dynamics of a quantum oscillator, whose evolution is monitored by a Bose-Einstein
condensate (BEC) trapped in a symmetric double-well potential. It is demonstrated that the oscillator may
experience various degrees of decoherence depending on the variable being measured and the state in which the
BEC is prepared. These range from a “coherent” regime in which only the variances of the oscillator position and
momentum are affected by measurement, to a slow (power-law) or rapid (Gaussian) decoherence of the mean
values themselves.
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I. INTRODUCTION

In the past few years there has been much interest, both
theoretical and experimental, in nanomechanical oscillators
whose quantum behavior can be observed (measured) within
the limits imposed by the uncertainty relations [1,2]. Typically,
various degrees of coherent control over such oscillators
can be achieved by incorporating them in hybrid devices
involving superconducting microwave cavities [3], supercon-
ducting qubits [4,5], single-electron transistors [6,7], and point
contacts (PCs) [8]. More recently, several schemes for coupling
a quantum system to a Bose-Einstein condensate (BEC) have
been proposed [9]. In the case of a measurement involving a PC
in a large bias regime, interaction between an oscillator and the
electron current damps the latter, leaving it in an equilibrium
thermal state [10]. In this work we analyze a setup in which
an oscillator is coupled to a BEC trapped in a symmetric
double-well potential rather than to a PC. With the atomic
current dependent on the oscillator coordinate, the BEC is able
to monitor the oscillator evolution, at the cost of introducing
decoherence to the oscillator dynamics. This decoherence is
the main subject of this paper. We will show that, unlike in
the case of a point contact, an oscillator monitored by a BEC
does not, in general, reach a thermal equilibrium [10,11] and
may, in some cases, retain a degree of coherence, depending
on the oscillator variable being monitored as well as on the
initial state of the BEC. The absence of a transition to thermal
equilibrium predicted, for example, for an oscillator coupled
to a PC, is a consequence of the fact that a single energy level,
rather than a broad energy band, is available for each tunneling
boson. For recent relevant work on the types of decoherence
possible in open systems we refer the reader to Ref. [12].

II. THE DETECTOR MODEL

We consider a system described by the Hamiltonian that
is a generalization of the “gatekeeper” model introduced in
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Ref. [13], i.e., N noninteracting [14] particles of a BEC trapped
in a double-well potential coupled to a harmonic oscillator that
is being monitored (we put h̄ = 1),

H = Hcon + Hosc + δ�Aosc ⊗ Bcon, (1)

where

Hcon = �0 (c†LcL + c
†
RcR) − �1 (c†LcR + c

†
RcL),

Hosc = ω0
(
a†a + 1

2

)
, (2)

Bcon = c
†
LcR + c

†
RcL,

and c
†
L(c†R) are the creation operators for the particles of the

condensate in the left (right) reservoir (Fig. 1). a† (a) is
the creation (annihilation) operator of a harmonic oscillator
with frequency ω0 and mass m, Hosc = P 2/2m + 1

2mω2
0X

2.
The oscillator is assumed to be charged so as to affect the
barrier between the two wells. The operator Aosc represents
the variable that controls the tunneling rate between the
wells, so that its evolution can be monitored by observing
the atomic current or a change in the number of bosons
in one of the reservoirs. Both couplings linear (Aosc ∼ X)
and quadratic (Aosc ∼ X2) in the oscillator coordinate are
possible [15]. Coupled in such a manner, the BEC shares
with a conventional von Neumann meter [16] the property
that if prepared in a stationary state, it will remain in
that state inducing an additional force on the measured
oscillator [17].

With Hcon and Bcon commuting, [Hcon,Bcon] = 0, such
states are easily found to be

|φ̃n〉 = (c†L + c
†
R)N−n (c†L − c

†
R)n√

2N (N − n)! n!
|0〉con, (n = 0,...,N ), (3)

where the vacuum |0〉con corresponds to no bosons in the
condensate. Assuming that the oscillator and the BEC are
prepared in a product state, ρ(0) = ρosc(0) ⊗ ρcon(0), and
noting that Bcon|φ̃n〉 = (N − 2n)|φ̃n〉, we find the state of the
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FIG. 1. Double-well potential containing the N bosons that may
tunnel from one well to the other. The flow of bosons is modulated
by some function of the position of the oscillator.

monitored oscillator at a time t by tracing out the BEC degrees
of freedom,

ρosc(t) = Trcon[e−iH tρ(t)eiHt ]

=
∑

n

〈φ̃n|e−iH tρ(t)eiHt |φ̃n〉

=
∑

n

Pn ρ(n)
osc(t), (4)

with

Pn ≡ 〈φ̃n|ρcon(0)|φ̃n〉,
(5)

ρ(n)
osc(t) ≡ e−iHosc(εn)t ρosc(0)eiHosc(εn)t ,

Hosc(ε) ≡ Hosc + εAosc, and εn ≡ δ�(N − 2n).
Thus, ρosc(t) is an incoherent superposition of the states

obtained by evolving ρosc(0) with the family of Hamiltonians
Hosc(εn), n = 0,1,...,N , weighted by the probabilities Pn to
find the BEC in the state |φ̃n〉. Accordingly, at a time t , the
expectation value of an oscillator variable represented by an
operator Oosc is given by the sum

〈Oosc(t)〉 =
∑

n

PnTrosc
[
ρ(n)

osc(t)Oosc
]
. (6)

Following Ref. [13], we take the limit in which the number of
atoms becomes large, while the coupling between the oscillator
and each individual atom is reduced, namely

N → ∞, δ� → 0, δ�
√

N = κ, (7)

and choose �1 = 0 so as to exclude a constant background
current [20]. The conditions of Eq. (7) ensure that a macro-
scopic atomic current flows from the left to the right well,
as the recurrence time of the condensate greatly exceeds the
duration of the measurement. Thus, the atoms are not going
to return to their initial state in the foreseeable future, i.e., the
BEC becomes an irreversible meter [13,21]. As discussed in
Ref. [13], for a condensate with a large but finite number of
atoms the oscillator begins to be affected by the size of the
condensate at times of the order of the Poincaire recurrence
time (Rabi period) of the latter, i.e., when the escape of
the atoms into the right well can no longer be considered
irreversible [22].

Replacing sums by integrals, 2δ�
∑

n → ∫ ∞
−∞ dε, we

rewrite Eq. (4) as

ρosc(t) =
∫ ∞

−∞
dε P (ε) e−iHosc(ε)t ρosc(0)eiHosc(ε)t , (8)

where P (εn) ≡ Pn/(2δ�). Then, separating stationary and
time-dependent parts,

ρosc(t) =
∫ ∞

−∞
dε P (ε)

{∑
i

big〈ψε
i

∣∣ρosc(0)
∣∣ψε

i

〉∣∣ψε
i

〉〈
ψε

i

∣∣
+

∑
i 
=j

e−i(Eε
i −Eε

j )t 〈ψε
i

∣∣ρosc(0)
∣∣ψε

j

〉∣∣ψε
i

〉〈
ψε

j

∣∣}, (9)

where Eε
i and |ψε

i 〉 are the eigenvalues and eigenvectors,
respectively, of the Hamiltonian Hosc(ε). The long-time
behavior of ρosc(t) now depends on the spectra Eε

i . Indeed,
for Eε

i − Eε
j 
= const(ε) rapidly oscillating exponentials will

cause the second term in Eq. (9) to vanish, so that ρosc(t) [and
with it the averages of Eq. (6)] will tend to stationary values
as t → ∞. Without such a cancellation, the oscillator will not
be able to reach a steady state no matter how long one waits.

Consider further a BEC initially localized in the left well,
ρcon(0) = |φ0〉〈φ0|, where |φ0〉 = (c†L)N |0〉con/

√
N !. For the

probability weights Pn in Eqs. (4) and (6) we have

Pn = N !

2N (N − n)!n!
, (10)

and applying the Stirling formula in the limit of Eq. (7)
yields P (ε) = (2πκ2)−1/2 exp(−ε2/2κ2). Rather than analyze
the density matrix of Eq. (4), it is convenient to consider the
mean position and momentum of the monitored oscillator,
together with their variances, thus choosing the operator Oosc

in Eq. (6) to be X, X2, P , or P 2.

III. MONITORING OF A ONE-DIMENSIONAL
HARMONIC OSCILLATOR

A. Monitoring position: Coherent motion with “breathing”

With Aosc ≡ a† + a = √
2mω0X ≡ X/X0, the BEC moni-

tors oscillator’s position X, and we need to consider motion in
a family of harmonic potentials shifted relative to the original

one by δxn ≡
√

2
mω0

εn

ω0
, n = 0,1,...,N ,

Vn(x) = mω2
0(x + δxn)2/2 − mω2

0δx
2
n/2. (11)

Thus, the energy differences in Eq. (9) are independent of ε,
Eε

i − Eε
j = ω0(i − j ), and no steady state can be reached. We

note further that since Hosc(ε) in Eq. (5) remains quadratic in
both X and P , equations of motion for the five operators X, P ,
X2, P 2, and (XP )s ≡ (XP + PX)/2 form a closed system,

d〈X(t)〉n
dt

= 1

m
〈P (t)〉n

d〈P (t)〉n
dt

= −mω2
0〈X(t)〉n −

√
2mω0εn

d〈X2(t)〉n
dt

= 2

m
〈(XP )s(t)〉n

d〈P 2(t)〉n
dt

= −2mω2
0〈(XP )s(t)〉n − 2

√
2mω0εn〈P (t)〉n
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d〈(XP )s(t)〉n
dt

= 1

m
〈P 2(t)〉n − mω2

0〈X2(t)〉n
−

√
2mω0εn〈X(t)〉n, (12)

which can be solved for each value εn. Then, for 〈X(t)〉n and
〈P (t)〉n, one obtains

〈X(t)〉n =
(

〈X(0)〉 +
√

2

mω0

εn

ω0

)
cos(ω0t)

+ 〈P (0)〉
mω0

sin(ω0t) −
√

2

mω0

εn

ω0

〈P (t)〉n = −mω0

(
〈X(0)〉 +

√
2

mω0

εn

ω0

)
sin(ω0t)

+〈P (0)〉 cos(ω0t), (13)

where 〈Oosc(0)〉 = Trosc[Ooscρosc(0)] is the expectation value
of Oosc in the initial oscillator state. Replacing solutions of
Eq. (13) in the last three equations in Eq. (12) and averaging
with the probabilities Pn then yields

d〈X(t)〉
dt

= 1

m
〈P (t)〉

d〈P (t)〉
dt

= −mω2
0〈X(t)〉

d〈X2(t)〉
dt

= 2

m
〈(XP )s(t)〉

d〈P 2(t)〉
dt

= −2mω2
0〈(XP )s(t)〉 + 4mκ2 sin(ω0t)

d〈(XP )s(t)〉
dt

= 1

m
〈P 2(t)〉 − mω2

0〈X2(t)〉

− 2κ2

ω0
[cos(ω0t) − 1], (14)

where
∑

n Pnεn = 0 and
∑

n Pnε
2
n = κ2 have been used. From

the first two equations, we find the mean values of both the
coordinate and the momentum unchanged by the presence of
the BEC, 〈X(t)〉 = 〈X(t)〉free and 〈P (t)〉 = 〈P (t)〉free, where
the subscript “free” refers to an oscillator uncoupled from the
BEC (κ = 0). This does not, however, imply that the BEC has
no effect on the dynamics of the oscillator. Indeed, calculating
the variances we find

(�X)2 = 〈X2〉 − 〈X〉2 = (�X)2
free + 4σ 2

X sin4(ω0t/2)

(�P )2 = 〈P 2〉 − 〈P 〉2 = (�P )2
free + σ 2

P sin2(ω0t), (15)

where σX ≡
√

2
mω0

κ
ω0

and σP ≡ √
2mω0

κ
ω0

. Thus, while

〈X(t)〉 and 〈P (t)〉 follow their unperturbed trajectories,
the widths of the corresponding distributions “breath,”
first increasing and then decreasing again. Figure 2
shows the dynamics of the corresponding mean val-
ues and variances for an oscillator prepared in a co-
herent state (minimal Gaussian wavepacket) 〈x|ψosc(0)〉 =
(mω0/π )1/4e−mω0[x−〈X(0)〉]2/2ei〈P (0)〉x with κ2/ω2

0 = 25. Note
that �X(t) recovers its original value after every period
T = 2π/ω0 as the oscillator returns to its initial state in each
Vn(x). The momentum variance �P (t) does so also after every
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FIG. 2. (Color online) Coherent motion (X is monitored) of a
coherent initial oscillator state with 〈X(0)〉/X0 = 0, 〈P (0)〉/P0 = 2;
X0 ≡ (2mω0)−1/2, P0 ≡ (mω0/2)1/2. (a) Mean position 〈X(t)〉/X0

(thick solid) vs. ω0t . Also shown are [〈X(t)〉 ± �X]/X0 (solid)
and [〈X(t)〉 ± �Xfree]/X0 (dashed); (b) Mean momentum 〈P (t)〉/P0

(thick solid) vs. ω0t . Also shown are [〈P (t)〉 ± �P ]/P0 (solid) and
[〈P (t)〉 ± �Pfree]/P0 (dashed). Inset: closed phase space trajectory
traced by the mean momentum and position, 〈P (t)〉/P0 vs. 〈X(t)〉/X0.

half-period, when the shape of the original wavepacket is
restored but the position of its center is reflected with respect
to the origin of each Vn, i.e., when �X(t) reaches its maximum
value.

For other initial states, Eqs. (15) remain valid and changes
only occur in the explicit expression taken by (�X)2

free and
(�P )2

free.

B. Monitoring x2: Gaussian decoherence

With Aosc ≡ (a† + a)2 = X2/X2
0, the BEC monitors the

square of the oscillator’s position, X2, and we need to consider
motion in a family of harmonic potentials with the same
origin, but with different frequencies, ωn =

√
ω2

0 + 4εnω0,
n = 0,1,...,N ,

Vn(x) = 1
2 m

(
ω2

0 + 4εnω0
)
x2 = 1

2mω2
nX

2. (16)

Now Eε
i − Eε

j = (i − j )
√
ω2

0 + 4εω0 
=const(ε), and we expect
that in the irreversible limit of Eq. (7) oscillator will undergo a
relaxation to the steady state given by the first term in Eq. (9).
Solving equations of motion for each oscillator frequency ωn

and averaging with the probabilities of Eq. (10), we find

〈X(t)〉 =
∑

n

Pn

{
〈X(0)〉 cos(ωnt) + 〈P (0)〉

mωn

sin(ωnt)

}

〈X2(t)〉 =
∑

n

Pn

{ 〈(XP )s(0)〉
mωn

sin(2ωnt) + 〈P 2(0)〉
2m2ω2

n

× [1 − cos(2ωnt)] + 〈X2(0)〉
2

[1 + cos(2ωnt)]

}
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〈P (t)〉 =
∑

n

Pn{〈P (0)〉 cos(ωnt) − mωn〈X(0)〉 sin(ωnt)}

〈P 2(t)〉 =
∑

n

Pn

{
− mωn〈(XP )s(0)〉 sin(2ωnt) + 〈P 2(0)〉

2

× [1+ cos(2ωnt)]+m2ω2
n

2
〈X2(0)〉[1− cos(2ωnt)]

}
.

(17)

We note that for εn < −ω0/4, ωn becomes imaginary as
the interaction turns the oscillator potential into a parabolic
repeller, leading to the break up of the system. Choosing the
interaction to be small enough to neglect the possibility of
breakup and taking the limit of Eq. (7), we replace the sums
in Eqs. (17) by integrals to obtain

〈X(t)〉 = 〈X(0)〉 Re[f0(t)] + 〈P (0)〉
mω0

Im[f1(t)],
(18)

〈P (t)〉 = 〈P (0)〉 Re[f0(t)] − mω0〈X(0)〉 Im[f−1(t)],

with

fβ(t) ≡ 1√
2πσ 2

∫ ∞

−1
dz e−z2/2σ 2 eiω0t

√
1+z

(1 + z)β/2
, (19)

where σ = 4κ/ω0. Similar expressions can be easily obtained
for 〈X2(t)〉 and 〈P 2(t)〉,

〈X2(t)〉 = 〈(XP )s(0)〉
mω0

Im[f1(2t)] + 〈P 2(0)〉
2m2ω2

0

{1 − Re[f2(2t)]}

+ 〈X2(0)〉
2

{1 + Re[f0(2t)]}
〈P 2(t)〉 = −mω0〈(XP )s(0)〉Im[f−1(2t)]

+ 〈P 2(0)〉
2

{1 + Re[f0(2t)]}

+ m2ω2
0

2
〈X2(0)〉{1 − Re[f−2(2t)]}, (20)

where
∑

n Pn/ω
2
n � 1/ω2

0 was used since κ << ω0. For a
weak coupling, σ << 1, and times not exceeding 1/ω0σ

2,
the exponent in Eq. (19) can be expanded up to the second
order in z. Replacing the lower limit of integration by −∞
and evaluating Gaussian integrals yields

fβ(t) =
√

1

1 + iω0σ 2t/4
e−ω2

0σ
2t2/(8+2iσ 2ω0t)eiω0t + O(σ ).

(21)
It is readily seen that, irrespective of the value of β,
|fβ(t)| decays on a time scale T ≡ 1/(ω0σ ) ≈ κ−1 so that
for t � ω0/κ

2 >> T both the mean position 〈X(t)〉 and
the mean momentum 〈P (t)〉 will have decayed to zero,
regardless of their initial values, the decay being Gaussian in
time.

Figure 3 illustrates Gaussian decoherence for the same
initial coherent state as in Fig. 2 and for N = 100 and
δ�/ω0 = 0.0024. Again, the expressions in Eqs. (17) and
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FIG. 3. (Color online) Gaussian decoherence (X2 is monitored)
of a coherent initial oscillator state with 〈X(0)〉/X0 = 0, 〈P (0)〉/P0 =
2; X0 ≡ (2mω0)−1/2, P0 ≡ (mω0/2)1/2. (a) Mean position 〈X(t)〉/X0

(thick solid) vs. ω0t . Also shown are [〈X(t)〉 ± �X]/X0 (dashed);
(b) Mean momentum 〈P (t)〉/P0 (thick solid) vs. ω0t . Also shown are
[〈P (t)〉 ± �P ]/P0 (dashed). Inset: decaying phase space trajectory
traced by the mean momentum and position, 〈P (t)〉/P0 vs. 〈X(t)〉/X0

as given by Eqs. (17) (thick solid) and (18)–(21) (dashed).

(18) are formally independent of the initial state chosen for
the harmonic oscillator.

We note [and this is a general effect of a weak coupling,
κ << ω0, acting over a long time t >> T ; c.f. Eq. (17)] that
in the final steady state of the oscillator, the initial energy is
shared equally between its kinetic and potential components;
i.e., for t >> T we have

〈P 2(t)〉
2m

= 1

2
m

∑
n

Pnω
2
n〈X2(t)〉n = 〈Hosc(0)〉

2
(22)

C. Power law decoherence

Other types of decoherence are possible with different
choices of the initial state of the BEC. For example, a power-
law decoherence can be achieved by replacing in Eq. (19)
the smooth Gaussian factor by a discontinuous one. Thus,
choosing

Pn ≡ |〈φ̃n|φ0〉|2 = e−αωn/

N∑
n�N/2

e−αωn (23)

for n � N/2 and zero otherwise and taking the limit of Eq. (7)
for a state with 〈X(0)〉 = 0 yields

〈X(t)〉 = 〈P (0)〉 α sin(ω0t) + t cos(ω0t)

m(αω0 + 1)(1 + t2/α2)
, (24)

so that for t >> α, 〈X(t)〉 tends to zero as 1/t .
In summary, in a hybrid setup involving an oscillator and

a BEC in a symmetric double-well potential, we have an
example of an exactly solvable detector model demonstrating
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nontrivial dynamics. In the irreversible limit, the meter
provides unidirectional macroscopic atomic current whose
magnitude depends on the oscillator’s position. Unlike in the
case of a point contact, the measurement does not lead to
universal damping of the oscillator and eventual thermalization
of its initial state. Rather, depending on the oscillator variable
being monitored as well as on the initial state of the BEC, the
oscillator may or may not undergo relaxation to a steady state
and retain a degree of initial coherence. Such a behavior is
a consequence of the fact that a single energy level, rather

than a broad energy band, is available for each tunneling
boson.
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