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We study the scattering of light (null geodesics) by two fixed extreme Reissner-Nordström black holes,

in which the gravitational attraction of their masses is exactly balanced with the electrostatic repulsion of

their charges, allowing a static spacetime. We identify the set of unstable periodic orbits that form part of

the fractal repeller that completely describes the chaotic escape dynamics of photons. In the framework of

periodic orbit theory, the analysis of the linear stability of the unstable periodic orbits is used to obtain the

main quantities of chaos that characterize the escape dynamics of the photons scattered by the black holes.

In particular, the escape rate that is compared with the result obtained from numerical simulations that

consider statistical ensembles of photons. We also analyze the dynamics of photons in the proximity of a

perturbed black hole and give an analytic estimate of the escape rate in this system.
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I. INTRODUCTION

In general relativity, the nonexistence of an absolute
time parameter introduces new aspects in the characteriza-
tion of chaos with respect to the well-known Newtonian
dynamics [1]. Some relativistic systems in which the ex-
istence of chaos has been reported include charged parti-
cles in a magnetic field interacting with gravitational
waves, spinning particles orbiting rotating and nonrotating
black holes, gravitational waves from spinning compact
binaries, as well as particles in Majumdar-Papapetrou
geometries.

Most of the studies of chaos around black holes have
focused on the analysis of the qualitative changes in the
dynamics of an isolated black-hole spacetime caused by a
small perturbation due to external mass distributions [2–6],
gravitational waves [7], spin orbit, and spin-spin coupling
[8], or magnetic fields [9]. Recently, the projects to start up
operative ground-base gravitational wave detectors (LIGO,
VIRGO, GEO600, TAMA300, AIGO) and a planned laser
interferometer space antenna (LISA) [10], which will be
able to detect the signals from gravitational wave sources,
such as inspiralling compact binary systems of neutron
stars or black holes, have increased the interest in the
presence of chaos in the dynamics of binary black holes
and its effects on the outgoing gravitational radiation [11].

In this work we use the Majumdar-Papapetrou metric
[12] to analyze the dynamics of photons in the gravitational
field of two extreme Reissner-Nordström black holes that
are fixed in space due to the balance of their gravitational
attraction and electrostatic repulsion. Although it is un-
likely that this metric describes any astrophysical system,
since in the real Universe black holes tend to rotate around
their center of mass producing gravitational waves and do
not possess overall electric charge, the chaotic scattering of
photons in the Majumdar-Papapetrou static spacetime of

nonrotating black holes with extreme electric charge still
provides an interesting formal model that can be used to
illustrate many of the features expected in more realistic
systems.
In [2] Chandrasekhar studied the scattering of radiation

by two extreme Reissner-Nordström black holes that are at
finite distance apart. In contrast to the two center problem
in Newtonian gravitation, in general relativity this two
center gravitational problem is generally not integrable.
An appendix in [2] displays a set of null geodesics (pho-
ton’s trajectories) in the meridian plane of the system and
concludes that the dynamics is probably not separable.
Shortly after, Contopoulos [3] systematically studied the

set of photon trajectories with zero angular momentum
component along the axis that goes through the black
holes. In that case, the motion is confined to a plane (the
meridian plane). The study concluded that there are three
types of non-periodic motions. There are orbits that fall
into one of the black holes, with massM1 or massM2, these
are orbits of type I and II, and there are orbits that escape to
infinity; these are orbits of type III. The orbits of different
types are separated by orbits that tend asymptotically to
three main types of unstable periodic orbits. One kind of
periodic orbits goes around one of the black holes, either
M1 or M2. A third type of unstable periodic orbits goes
around the two black holes. Between two non-periodic
orbits of two different types there are orbits of a third
type. In a related work, Contopoulos et al. [13] analyze
in detail the different types of periodic orbits in the two
fixed center system and compare families of these orbits in
the Newtonian and the relativistic problems. In this system
chaos appears explicitly as the initial conditions of these
types of orbits form a Cantor set. Further numerical evi-
dence indicated that all the photon periodic orbits are
unstable. In the same direction the phase-space trajectories
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in a multi-black-hole spacetime were investigated [4], and
it was found that the chaotic geodesics are well described
by Lyapunov exponents. All these works strongly indicate
that the scattering of photons by two Reissner-Nordström
black holes held fixed is chaotic and that the set of periodic
orbits is unstable. The geometric analysis of the flow also
showed the chaotic behavior of the relativistic null-
geodesic motion in the two black-hole spacetime [14].
More recently, Contopoulos et al. studied in detail the
asymptotic curves from the periodic orbits, their homo-
clinic and heteroclinic intersections, and the basins of
attraction of two black holes [15].

Our aim is to give a full description of the chaotic escape
dynamics of photons in the two black-hole system in terms
of the different physical indicators of chaos. We shall
analyze the linear stability of the dynamics, in particular,
the unstable periodic orbits, and from that information we
evaluate the escape rate associated with the equations of
motion using the well-known trace formula for hyperbolic
flows of Cvitanovic and Eckhardt [16]. It turns out that the
escape rate is given by the leading eigenvalue of the
spectrum of the evolution operator [17]. In addition, we
shall compare our results with numerical simulations that
consider the time evolution of statistical ensembles of
photons.

In Sec. II, we describe the Chandrasekhas’s model to
analyze the photon dynamics under the gravitational field
of two extreme Reissner-Nordström black holes. In
Sec. III, we discuss the linear stability of the dynamics
and the general methods that we will consider to obtain the
escape dynamics of photons. Section IV introduces the
formalism to study the time evolution of statistical ensem-
bles of photons and their escape dynamics. In Sec. V, we
present the set of periodic orbits of the system in the
meridian plane ðLz ¼ 0Þ and give their periods and stretch-
ing factors. In this section we also illustrate the fractal
repeller associated with the dynamics of photons in the two
black-hole field. In Sec. VI, we calculate the main quanti-
ties of chaos derived from the analysis of the linear stability
of the unstable periodic orbits. The escape rate obtained
from the periodic orbit theory is compared with the value
obtained from numerical simulations that consider statis-
tical ensembles of photons. In Sec. VII, we analyze the
dynamics in the proximity of a perturbed black hole and
give an analytic estimate of the escape rate in this system.
In Sec. VIII, the main conclusions are put together.

II. DYNAMICAL EQUATIONS

The model studied by Chandrasekhar in [2] derives from
the solutions of the Einstein-Maxwell equations to describe
a problem analogous to the Newtonian arrangement of
charged mass points in which the mutual Coulomb repul-
sions are balanced with the gravitational attraction. These
solutions are known as the Majumdar-Papapetrou solutions
[12]. They are obtained from an static solution of the

Einstein-Maxwell equations [18]. The metric of the
Majumdar-Papapetrou solution of the Einstein-Maxwell
equations is given by

ds2 ¼ dt2=U2 �U2ðdx2 þ dy2 þ dz2Þ; (1)

where ðx; y; zÞ are the spatial coordinates. The function U,
which depends only on the spatial coordinates, is a solution
of the three-dimensional Laplace’s equation

r2U ¼
�
@2

@x2
þ @2

@y2
þ @2

@z2

�
U ¼ 0: (2)

Hartle and Hawking [19] showed that for a function U of
the form

U ¼ 1þXN
i¼1

Mi

ri
; (3)

where ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx� xiÞ2 þ ðy� yiÞ2 þ ðz� ziÞ2

p
, the

Majumdar-Papapetrou solution corresponds to a system
of N extreme Reissner-Nordström black holes with hori-
zons at ðxi; yi; ziÞ and with masses equal to their charges
Mi ¼ Qi > 0. The metric is everywhere regular except at
the black-hole locations, where there are coordinate singu-
larities, as argued in [2,18].
We will consider a configuration of two black holes

located at ð0; 0;�zbhÞ. Using geometrized units (the speed
of light in vacuum c ¼ 1 and the gravitational constant
G ¼ 1) the function U takes the form

U ¼ 1þ M1

ðx2 þ y2 þ ðz� zbhÞ2Þ1=2

þ M2

ðx2 þ y2 þ ðzþ zbhÞ2Þ1=2
: (4)

The Lagrangian L associated with the metric (1) is
defined by

L ¼ _t2

2U2
�U2

2
ð _x2 þ _y2 þ _z2Þ; (5)

where the dot denotes the derivative with respect to the
affine parameter �. The HamiltonianH can be expressed
as

H ¼ 1

2
U2p2

t � 1

2
U�2ðp2

x þ p2
y þ p2

zÞ; (6)

and the Hamilton equations that dictate the geodesic mo-
tion associated with the metric (1) are

_� ¼ d�

d�
¼ �U�2p�

_p� ¼ dp�

d�
¼ � 1

2
@�ðU2 �U�2P2Þ ð� ¼ x; y; zÞ:

(7)

According to Hamilton’s equations pt ¼ E ¼ constant
and the angular momentum along the z-axis Lz ¼ xpy �
ypx ¼ constant. In the case of photons, it follows also that

ALONSO, RUIZ, AND SÁNCHEZ-HERNÁNDEZ PHYSICAL REVIEW D 78, 104024 (2008)

104024-2



H ¼ U2E2=2�U�2ðp2
x þ p2

y þ p2
zÞ=2 ¼ 0 [2,3], and

therefore p2
x þ p2

y þ p2
z ¼ P2 ¼ U4E2. Hence, the prob-

lem scales with E and without loss of generality we can
consider E ¼ 1.

The equations of motion with respect to the killing time t
can be written as

�0 ¼ d�

dt
¼ _�

d�

dt
¼ �U�4p�

p0
� ¼ dp�

dt
¼ _p�

d�

dt
¼ �2U�1@�U ð� ¼ x; y; zÞ:

(8)

The sets of Eqs. (7) and (8) are related by the transforma-
tion

d

d�
¼ U2 d

dt
(9)

between the affine parameter � and the killing time t.
Although the solutions of these two systems induce differ-
ent flows, �� and �t, respectively, and therefore lead to
different values in some properties that depend on the flow,
the spatial distribution of their corresponding set of orbits
do not change, and nor do the critical elements of the flow,
such as the periodic orbits.

Because of the conservation of Lz, the motion for Lz ¼
0 is restricted to a plane (the meridian plane). We shall take
this simplification and study the dynamics in the meridian
plane.

III. LINEAR STABILITY

We are particularly interested in the stability analysis of
the solutions of the equations of motion, i.e. how they
behave after being slightly perturbed. To fix the notation
and make the paper self-contained, in this section we
introduce the basic concepts of linear stability. First, we
shall discuss this problem in a general context. Then the
application to the two black-hole system is
straightforward.

Let us consider a Hamiltonian system with f degrees of
freedom. The 2f-dimensional phase space can be denoted
by X ¼ ðX1; X2; � � � ; X2fÞ, with ðX1; � � � ; XfÞ the general-

ized coordinates and ðXfþ1; � � � ; X2fÞ the conjugated mo-

menta. The Hamilton’s equations for a Hamiltonian H
can be expressed as

_X ¼ � � @H
@X

; (10)

where _X ¼ dX=d�, with � the affine parameter � or the
killing time t, and� a 2f� 2f antisymmetric matrix of the
symplectic form

� ¼ 0 1
�1 0

� �
; (11)

with 0 and 1 the f� f null and unit matrices, respectively.

A solution X� of these differential equations is a curve in
phase space corresponding to a given initial condition X0.
The stability analysis of this solution involves the study of
the time evolution of a small perturbation �X with respect
to X�. Considering Y� ¼ X� þ �X, it follows that �X
satisfies the initial value problem

� _X ¼ Lð�Þ � �X; (12)

with Lð�Þ ¼ � � @2H
@X2 jX�

. This is a linear initial value prob-

lem with time-dependent coefficients. For a given initial
perturbation �X0 it has the solution

�X� ¼ MðX0; �Þ � �X0: (13)

The 2f� 2f matrix MðX0; �Þ is usually referred as the
fundamental matrix and gives the time evolution of an
initial displacement �X0. The fundamental matrix satisfies
the differential equation

_MðX0; �Þ ¼ Lð�Þ �MðX0; �Þ; with MðX0; 0Þ ¼ 1:

(14)

The behavior of the perturbation �X can be analyzed in
terms of the Lyapunov exponents of X�, which measure the
rate of exponential separation or approach of initially
infinitely close trajectories. The Lyapunov exponent asso-
ciated with the unit vector ej ¼ �Xj=j�Xjj along the di-

rection of �Xj is given by

�ðX0; ejÞ ¼ lim
�!1

1

�
lnjMðX0; �Þ � ejj: (15)

The number of Lyapunov exponents is equal to the phase-
space dimension. Positive Lyapunov exponents indicate
dynamical instability of trajectories in phase space, and
therefore an extreme sensitivity to the initial conditions.
For a periodic orbit X�, the Lyapunov exponents are

directly related to the stability of this solution. The
Lyapunov exponents can be degenerate with multiplicity
mi, in the sense that several of them have the same value.
They are ordered as �1 � �2 � � � ��� with

P
�
i¼1 mi ¼ 2f.

The fundamental matrix has a symplectic structure and
therefore satisfies the relation MT�M ¼ � [20]. Because
of this property all the Lyapunov exponents in Hamiltonian
systems are grouped in pairs of equal absolute value and
opposite sign f�i;��igi¼1;���;f. Furthermore, perturbations

along the direction of the flow give a zero Lyapunov
exponent, and due to the pairing property another one is
also zero, which is a consequence of the conservation of
energy [21,22]. Thus, at least two exponents are zero.
The matrixMðX0; �Þ corresponding to a periodic orbit is

also periodic with the same period. In general, X� ¼ X�þT ,
with T ¼ rTp (r ¼ 1; 2; � � � ) and Tp the primitive period

of the orbit. The linear stability of a periodic orbit is
determined by the eigenvalues ofMðX0; �Þ over one primi-
tive period, i.e. MðX0; TpÞ. These eigenvalues, called

stretching factors or stability eigenvalues, are obtained

ESCAPE OF PHOTONS FROM TWO FIXED EXTREME . . . PHYSICAL REVIEW D 78, 104024 (2008)

104024-3



from the secular determinant

det½MðX0; TpÞ ��1� ¼ 0: (16)

Because of the symplectic property of the fundamental
matrix the eigenvalues �j are also grouped in pairs. From

the previous discussion two of them are equal to one. One
of them corresponds to perturbations along the periodic
orbit and the other to perturbations that are perpendicular
to the energy shell. The Lyapunov exponents associated
with a periodic orbit are given in terms of the stretching
factors as �i ¼ lnj�ij=Tp.

The stability of a particular motion is determined by the
location of the stretching factor in the complex plane:
j�ij> 1 is a signature of instability and corresponds to
the unstable manifold of the periodic orbit, j�ij< 1 is
related to the stable manifold and j�ij ¼ 1 corresponds
to the center manifold of the orbit.

A straightforward application, which is directly related
to our problem, is the study of the dynamics of two-
dimensional systems. In these systems a periodic orbit is
called hyperbolic when �> 1>��1 > 0, hyperbolic
with reflection when �<�1<��1 < 0, and elliptic
when j�j ¼ 1 [20]. The orbit stability changes whenever
� crosses the unit circle, and generally a bifurcation may
occur in which some periodic orbits can disappear or
emerge. In autonomous systems, the energy is the main
bifurcation parameter. However, in the two black-hole
system no bifurcation is expected, as the photon dynamics
scales with the energy.

A periodic orbit is characterized by its primitive period
and its stretching factors �i. We shall see below how this
information can be used to analyze in detail the escape
dynamics of photons scattered by two black holes. In
general the Lyapunov exponents and the periods of the
periodic orbits are not invariant under time transforma-
tions, but the stretching factor are invariant, as noted in
[4,6,23,24]. In particular, Motter [25] showed that if we
consider a transformation of the form d� ¼ fðXÞdt, the
Lyapunov exponents transform according to �

�
i ¼ �t

i=hfit,
where hfit ¼ limt!1ð1=tÞ

R
t
0 fðXðt0ÞÞdt0. For a given peri-

odic orbit p the Lyapunov exponents over a period T� in

the � time and over a period Tt in the t time are related by

�
T�

i ¼ �Tt
i =hfi�Tt

with hfi�Tt
¼ ð1=TtÞ

RTt

0 fðXpðt0ÞÞdt0 ¼
T�=Tt. From these relations it can be concluded that

�
T�

i T� ¼ �Tt

i Tt, which implies the invariance of the

stretching factors, �
T�

i ¼ �Tt

i .

IV. EVOLUTION OF THE DENSITY OF PHOTONS
AND THEIR DECAY DYNAMICS

The motion of a single photon in the meridian plane is
chaotic and it is useful, in order to characterize its escape
dynamics from the black holes, to consider statistical
ensembles that provide a probabilistic description of the
process. Therefore, instead of analyzing a single photon

orbit, we consider an ensemble described by some density
�. For a given Hamiltonian H , the time evolution of a
density � is dictated by the Liouville equation

@�� ¼ L̂�; (17)

with the Liouville operator L̂ given by the Poisson bracket

as L̂ ¼ fH ; �g. Assuming a time-independent
Hamiltonian, the solution of this linear equation can be
expressed as

�� ¼ eL̂��0; (18)

where�0 is the initial density. From (18), the average over
the ensemble of any observable A at time � can be com-
puted as

hAi� ¼
Z

dXAð��XÞ�0ðXÞ; (19)

where �� is the flow that maps an initial condition X0 into
X�, according to X� ¼ ��X0. This last expression can also
be written in the form

hAi� ¼
Z

dXdYAðXÞ�ðX���YÞ�0ðYÞ; (20)

where the Dirac distribution �ðX ���YÞ represents the
conditional probability density of a trajectory at position X
at time � given the initial position Y. Indeed, the Dirac
distribution defines the kernel of the evolution operator.
Equation (20) defines two self-adjoint operators as

hAi� ¼ hP̂y�Aj�0i ¼ hAjP̂��0i: (21)

The evolution of a probability density is ruled by the
Frobenius-Perron equation [21,22]

��ðXÞ ¼ P̂��0ðXÞ �
Z

dY�ðX ���YÞ�0ðYÞ; (22)

and the time evolution of the observable is dictated by the
Koopman operator [26] defined by

A�ðYÞ ¼ P̂y�AðYÞ �
Z

dX�ðX���YÞAðXÞ: (23)

In the case of an invertible and conservative flow��, the

Frobenius-Perron operator reduces to ��ðXÞ ¼ P̂��0ðXÞ ¼
�0ð���XÞ. In open systems, the trajectories that are ini-
tially confined in a bounded region in phase space tend to
escape toward infinity with an exponential escape rate. The
number of particles Nð�Þ that remain inside the initial
domain at instant � decays exponentially with time as
Nð�Þ 	 Nð0Þe���, where � is the so-called escape rate.

The leading eigenvalue of P̂� dominates the decay and
determines the escape rate. The rest of the spectrum (reso-
nances) describe further details of the dynamics and give
other important time scales besides the one associated with
the escape rate. Thus, the spectrum of the Frobenius-Perron

operator P̂� provides a way to describe the evolution of a
set of trajectories characterized by a density ��ðXÞ.
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The spectral theory of P̂� developed from the works of
Koopman [26] and von Neumann [27]. It assumes that the
evolution operator acts on a functional space of square
integrable densities L2. In that case, the evolution is uni-

tary, and the eigenvalues of P̂� are located on the unit
circle. The spectrum of a chaotic system presents continu-
ous components on the unit circle, which describe the
correlation function decay for these systems. New methods

have been developed to obtain the eigenvalues of P̂� out-
side the unit circle and to analyze the escape process or
relaxation dynamics [28,29]. These methods, which are
valid for systems where all the periodic orbits are unstable,
have been successfully used in chaotic systems and the
study of transport phenomena among other applications
[21,22,30–32]. We shall apply them to the study of the
escape dynamics of photons from the two black holes.

One of the methods developed to obtain the spectrum
computes the trace of the Frobenius-Perron operator. Here,
we shall outline this procedure and refer the reader to the
specialized literature on the subject [21,22,28,29,33] for
further details.

The trace of P̂� can be formally written as

Tr P̂� ¼
Z

dX�ðX���XÞ: (24)

The contributions to the trace are due to the fixed points of
the flow, which are given by the condition

X ¼ ��X; (25)

at some �. In general, this equation presents two types of
solutions: stationary points that satisfy (25) for all �, and
periodic orbits that satisfy the fix-point condition at a
discrete set of values, given by � ¼ rTp, with r ¼
1; 2; � � � . We assume that the solutions of (25) are isolated,
and therefore each stationary point or periodic orbit is
locally unique. A periodic orbit may belong to a continu-
ous family provide that there exists some continuous sym-
metry or some constant of motion. When this occurs the
integration domain in (24) must be reduced to a less
dimensional space until the periodic orbit is completely
isolated. In time-independent Hamiltonian systems, the
periodic orbits are rarely isolated; indeed, they tend to
form continuous families as the energy changes. Hence,
the phase space must be reduced considering the energy
conservation H ¼ E. Then the trace (24) is formally
given by

Tr EP̂
� ¼

Z
E
d2f�1x�ðX �	�

ExÞ; (26)

where 	�
E denotes the flow on the energy shell [16,21]. If

any additional symmetry is present in the system then
further reductions are required. In the two black-hole
system, we consider the dynamics on the energy shell,
and we remove the axial symmetry by choosing a particu-

lar meridian plane. Therefore, all the periodic orbits of the
flow can be treated as isolated.
The trace (26) can be written in terms of the unstable

periodic orbits of the flow and their repetitions [16,34]. In
order to do so, the integral in (26) is resolved considering at
each point a coordinate system with one axis fixed along
the periodic orbit. The integral over the coordinate along
the orbit is trivial, being related to the period of the orbit.
The integration over the transverse coordinates takes into
account the stability of the periodic orbit. The result for the
trace is [16]

Tr P̂� ¼ X
p¼p:p:o:

X1
r¼1

Tp

�ð�� rTpÞ
j detð1�mr

pÞj ð� > 0Þ; (27)

where the sums are over the primitive periodic orbits and
their r repetitions. The matrix mp is derived from the

fundamental matrix MðX0; TpÞ once the perturbations

along the orbit and the perturbations perpendicular to the
energy shell have been removed. Hence, in a two-
dimensional flow the matrix mp only contains the stretch-

ing factors whose modulus is different from one. These are
precisely the ones that are related to the stable and unstable
manifolds of the isolated unstable periodic orbit.
Formally, the Laplace transform of the Frobenius-Perron

operator gives the resolvent of the Liouville operator de-
fined in (17), which using (26) can be written as

Tr
1


� L̂
¼

Z 1

0
d�e�
� TrP̂ ¼ @

@

lnZð
Þ; (28)

where Zð
Þ is the so called Selberg-Smale zeta function
[35], given by

Zð
Þ � exp

�
� X

p¼p:p:o:

X1
r¼1

1

r

e�
rTp

j detð1�mr
pÞj

�
: (29)

Denoting by �p and ��1
p the eigenvalues of mp, the zeta

function can be expressed as

Zð
Þ ¼ Y
p¼p:p:o

Y1
k¼0

�
1� e�
Tp

j�pj�k
p

�
kþ1

; (30)

where �p > 1, since all the periodic orbits are unstable in

the two black-hole system. The spectrum of the system can
be determined from the zeroes of the function Zð
Þ, which
is usually expressed as a product of the inverse Ruelle �
functions

Zð
Þ ¼ ��1
0 ð
Þ��2

1 ð
Þ��3
2 ð
Þ � � � ; (31)

with the definition

��1
k ð
Þ ¼ Y

p¼p:p:o

�
1� e�
Tp

j�pj�k
p

�
: (32)

The relaxation times �i associated with the dynamics are
given by the poles of the resolvent of the Liouvillian, as
Re
i ¼ ��1

i , or equivalently, by the zeroes of the zeta
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function or the zeroes of the inverse of the Ruelle �
functions. The leading part of the spectrum is given by
the poles of the first Ruelle � function �0ð
Þ (or zeroes of
��1
0 ). So we are mainly interested in the part of the spec-

trum that controls the longtime behavior of the dynamics.
The set of unstable periodic orbits can be used to de-

scribe in fine detail the escape dynamics of photons from
the black holes. The number of periodic orbits in the fractal
repeller grows exponentially with the period, with a rate of
proliferation that is given by the topological entropy htop.

The amount of chaos in the system is given by the
Kolmogorov-Sinai entropy per unit time hKS, which mea-
sures the minimal data accumulation rate required to re-
construct a trajectory on the repeller without ambiguity.
The repeller has a mean Lyapunov exponent �. In a
Poincaré section that is transverse to the flow on the
repeller, the fractal repeller defines another fractal that is
characterized by the partial generalized fractal dimensions.
Two representative partial dimensions are the Hausdorff
dimension dH, which characterizes the bulkiness of the
repeller in phase space, and partial information dimension
dI that can be obtained from the Kolmogorov-Sinai en-
tropy and the mean Lyapunov exponent as dI ¼ hKS=�
[17].

The different quantities that characterize the repeller can
be obtained from the so-called topological pressure Pð�Þ
[36], which can be determined from the periodic orbits that
form part of the repeller as the leading zero of a Ruelle �
function

��1
� ð
Þ � Y

p¼p:p:o

�
1� e�
Tp

j�pj�
�
: (33)

The mean Lyapunov exponent for the trajectories on the
fractal repeller is � ¼ �dPð1Þ=d�, the escape rate is � ¼
�Pð1Þ, and the topological entropy is given by htop ¼
Pð0Þ. In two-dimensional Hamiltonian systems, the
Kolmogorov-Sinai entropy follows from hKS ¼ �� �
[37]. The partial Hausdorff dimension is obtained from
PðdHÞ ¼ 0, and the information dimension is given by
dI ¼ 1� �=�.

V. PERIODIC ORBITS AND THE REPELLER IN
THE MERIDIAN PLANE ðLz ¼ 0Þ

From now on we shall focus on the analysis of the escape
dynamics of photons from the black holes in the meridian
plane. As we have just mentioned, there are some impor-
tant objects that can be used to describe this dynamics.
First, we need to identify the set of periodic orbits and their
corresponding primitive periods. To analyze the linear
stability of each unstable periodic orbit we must integrate
its fundamental matrix in time up to one primitive period.
The eigenvalues of the resulting matrix give the stretching
factors associated with the orbit. Then, once we know the
periods and the stretching factors of the unstable periodic
orbits, the main quantities of chaos that characterize the

dynamics can be obtained following the methods described
in the previous section.
The restriction on the motion to the meridian plane Lz ¼

0 simplifies the set of equations to be integrated. Without
loss of generality we can consider that the photons move in
the ðx; zÞ plane. Then the equations of motion (7) with
respect to the affine parameter � reduce to

_� ¼ �U�2p� _p� ¼ �2U@�U ð� ¼ x; zÞ;
(34)

and Eq. (8) with respect to the killing time t becomes

�0 ¼ �U�4p� p0
� ¼ �2U�1@�U ð� ¼ x; zÞ:

(35)

These equations of motion and the equations associated
with the stability analysis were simultaneously integrated
using a Runge-Kutta-Fehlberg method. The search for
periodic orbits was performed using the Newton-Raphson
method. As we just mentioned, to compute the stretching
factors of the set of unstable periodic orbits, each orbit was
numerically integrated together with its corresponding
fundamental matrix up to one primitive period of the orbit.
Considering that the dynamics is highly unstable, it is
important to compute the unstable periodic orbit with
high accuracy in order to obtain the stability factors with
good precision. In our numerical results, the required high
accuracy in the period of the orbits and the stretching
factors was achieved by means of a MATHEMATICA code
in which a very high precision was demanded.
The periodic orbits in the system can be classified ac-

cording to a symbolic coding. In this work, taking as a
reference the symmetry axis that contains the two black
holes, in our coordinate system the z-axis, we introduce a
series of symbols to label these orbits. An orbit can cross
the z-axis either above the black hole located at z ¼ zbh,
below the black hole located at z ¼ �zbh or in between the
two black holes. We label each crossing that occurs at z >
zbh with the symbol ‘‘þ,’’ to indicate a crossing at z <
�zbh we use the symbol ‘‘�.’’ When an orbit crosses the
z-axis twice at the same point in between the two black
holes, drawing an ‘‘�’’ on the axis, we use the symbol
‘‘
.’’ Any other crossing in between the two black holes is
indicated with the symbol ‘‘þ’’ or the symbol ‘‘�’’ de-
pending on the sign of the z coordinate at the crossing
point, z > 0ðþÞ or z < 0ð�Þ. Figure 1 displays some of the
unstable periodic orbits numerically found and their cor-
responding symbolic coding. The primitive period of each
orbit is given in Table I.
In [24], a different coding to label the periodic orbits was

introduced. This coding was used to compute the topologi-
cal entropy per unit symbol. We remark that one of our
goals in this work is to compute the topological entropy per
unit time.
In Table I, the nontrivial stretching factors of the peri-

odic orbits depicted in Fig. 1 are listed. We recall that
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these are the stretching factors that are related to the
directions transverse to the periodic orbit. The trajectories
fþþgðf��gÞ, fþ�g, and fþ 
 �þg have the lowest stabil-
ity eigenvalues. The rest of the orbits are much more

unstable, as they have larger stretching factors. In general,
the more stable periodic orbits should dominate the asymp-
totic escape of particles from the two black-hole
configuration.
In the two black-hole system the set of unstable periodic

orbits are the only critical elements of the flow in the fractal
repeller that determines the escape dynamics of photons.
This distinguished subset of solutions plays a crucial role
as the averages of the dynamical quantities can be obtained
in terms of periodic orbits, provided that it is dense on the
repeller [21].
The dynamics in the proximity of the invariant set that

defines the repeller can be analyzed considering the time
interval that it takes to an orbit to escape from a finite
spatial domainU, when the photon evolves both forwards
and backwards in time. To numerically study the escape
dynamics, we introduce the forward and backward escape
time functions [21], which are defined by

Tþ
UðxÞ ¼ maxfT > 0;��x 2 U;8� 2 ½0; T½;8x 2 Ug;

(36)

T�
UðxÞ ¼ minfT < 0;��x 2 U;8� 2�T; 0�;8x 2 Ug:

(37)

The escape time functions provide an useful method to
construct the repeller [38]. The ensemble of initial con-
ditions whose escape time coordinate is larger than a given
value T contains all the trajectories that still remain inside
the domain U at time T. In the longtime limit this set
contains the trapped trajectories of the repeller and its
stable manifolds in U. As time evolves this set splits
into smaller pieces and eventually becomes a fractal set.
Similarly, it is possible to find the set of initial conditions
that have already arrived in the domain U before some
time �T in the past. The repeller is given by the intersec-
tion of these two sets.
The compound escape function Tþ

UðxÞ þ jT�
UðxÞj is very

useful to illustrate the structure of the repeller. To numeri-

TABLE I. The periods and the stretching factors of the unstable periodic orbits depicted in Fig. 1. The periods corresponding to both
the affine parameter � and the killing time t are indicated.

Symbolic coding Period Tpð�Þ Period TpðtÞ Stretching factor �p

fþþg, f��g 4.1 180 374 37.9 255 026 99.1 244 899

fþ�g 15.292 055 52.7 275 448 215.721 472

fþ 
 �
g 10.608 412 79.8 770 864 16 996.3144

fþ �þþg, f� þ��g 18.900 782 91.7 239 060 30 044.8517

fþ þþ 
�
g, f� �� 
þ
g 14.739 760 117.837 331 1:7 099 814� 106

fþ þþ���g 22.635 603 130.594 585 3:97 082 132� 106

fþ �þ 
�
g, f� þ� 
þ
g 25.410 381 133.342 257 4:57 097 810� 106

fþ �þþþ�g, f� þ���þg 34.185 532 144.455 986 6:49 738 275� 106

fþ þþ 
���
g 18.871 204 155.798 106 1:72 085 241� 108

fþ �����þþg, f� þþþþþ��g 26.748 625 168.528 893 3:95 770 189� 108

fþ �þ 
���
g, f� þ� 
þþþ
g 29.542 461 171.300 173 4:59 225 358� 108

fþ �þ 
��� 
þ�g, f� þ� 
þþþ 
�þg 44.828 729 224.030 938 9:92 347 816� 1010

{+-}

{+++---}

{+o-o}

{+++o---o}

{++}

{+-++}

{+-+o-o}

{+++o-o} {+-+o---o+-}

{+-+o---o}

{+-+++-}

{+-----++}

FIG. 1. Some of the unstable periodic orbits in a system with
two black holes located at zbh ¼ �1 and masses M1 ¼ M2 ¼ 1.
The symbolic coding that labels each orbit is indicated. Because
of the symmetry of the system with respect to equatorial line (the
x-axis), the change of sign of the coordinate z in each orbit on the
last two columns gives an additional periodic orbit. The sym-
bolic coding for these inverse orbits is obtained exchanging the
symbols ‘‘þ’’ and ‘‘�’’ in the orbits depicted in these columns.
For instance, the inverse orbit of fþþg has symbolic coding
f��g, the inverse of fþ �þþg is f� þ��g, the inverse of
fþ �þ 
�
g is f� þ� 
þ
g, and so on.
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cally compute this function we analyze the evolution, both
backwards and forwards in time, according to the equa-
tions of motion (7), of a large ensemble of photons initially
distributed at random in a finite region of space and certain
fixed initial directions. In order to distinguish the possible
outcomes of the photons in the two black-hole field, we
color code the initial position black if the corresponding
photon falls into any of the two black holes and gray if the
photon escapes toward infinity. Figure 2 displays a portrait
of the basins of attraction associated with these two pos-
sible outcomes in the plane ðx; zÞ of initial positions, for an
ensemble of photons with initial directions randomly fixed
between five selected values for the angle with respect to
the x-axis. It is well known that for chaotic systems the
interweaving of outcomes leads to fractal basin bounda-
ries; and in the two black-hole system, as expected, we can
see them explicitly. The blown-up regions depicted in the
different panels of Fig. 3 exemplify the repeated fractal
structure in the basin boundaries that characterize the
hyperbolic repeller. In the following sections, we compute
different characteristic quantities of the dynamics related
to this fractal repeller.

FIG. 2. Outcomes for photons in the two black-hole field. The
black dots are the initial positions of the trajectories that fall into
any of the two black holes. The gray dots localize the initial
positions of the photons that escape toward infinity. The evolu-
tion according to the equations of motion (7) was considered,
both backwards and forwards in time. The initial positions ðx; zÞ
were chosen at random in the finite region depicted, and the
initial directions were randomly selected with an angle with
respect to the x-axis equals to 0, =5, 2=5, 3=5, or 4=5.

FIG. 3. Several blownup regions of Fig. 2 showing the fractal structure of the repeller.
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VI. ESCAPE RATE IN THEMERIDIAN PLANE AND
OTHER CHARACTERISTIC QUANTITIES OF

CHAOS

Using the primitive periods Tp and stretching factors�p

of the set of unstable periodic orbits we can compute the
escape rate of the system as well as other characteristic
quantities of the dynamics related to the fractal repeller,
following the methods described in Sec. IV. To this aim, we
consider the cycle expansion method [16,34], which has
been successfully applied to other hyperbolic systems [30].
Because of the high instability of higher order periodic
orbits (longer symbolic coding) only three main periodic
orbits, fþþgðf��gÞ, fþ�g, and fþ 
 �þg contribute sig-
nificantly to the escape rate. Indeed, they give an accept-
able escape rate and the different quantities of chaos.

Figure 4 shows the pressure function obtained from the
periodic orbits. The main quantities of chaos obtained from
this pressure function and its first derivative are listed in
Table II. In particular, the escape rate that is equal to �� ¼
0:348 for the affine parameter and �t ¼ 0:089 for the kill-
ing time. From the analysis of the linear stability of the set
of unstable periodic orbits, it could be assumed that the
escape dynamics of photons from the two black holes is
mainly controlled by the outermost periodic orbit fþ�g. If
only this orbit is considered, it follows an escape rate

�fþ�g
� ¼ lnj�þ�j

Tþ�ð�Þ ¼ 0:351 �fþ�g
t ¼ lnj�þ�j

Tþ�ðtÞ ¼ 0:102;

(38)

which is close to the escape rate obtained from the pressure

function. Thus, we can conclude that the orbit fþ�g domi-
nates the effective escape of photons from the two black-
hole configuration, and even provides a fair estimate of the
escape rate.
In the following section, we contrast the escape rate

value derived from the analysis of the linear stability of
the periodic orbits with the escape rate obtained from
numerical simulations that consider the time evolution of
an statistical ensemble of photons.

Numerical simulations with statistical ensembles

We consider an ensemble of photons with initial posi-
tions uniformly distributed along the z-axis and initial
velocity parallel to the x-axis. This together with the
energy conservation completely defines the ensemble.
Once all the initial conditions have been fixed the time
evolution of each photon of the ensemble is numerically
integrated. Some of the photons fall into one of the two
black holes, while others escape to infinity. We are pre-
cisely interested in the second subset of trajectories. To

TABLE II. Characteristic quantities of chaos related to the
fractal repeller associated with the unstable periodic orbits given
in Fig. 1. � is the mean Lyapunov exponent of the repeller, � the
escape rate, hKS the Kolmogorov-Sinai entropy, htop the topo-

logical entropy, dH the Hausdorff dimension, and dI the partial
information dimension.

� � hKS htop dH dI

Affine parameter � 0.364 0.348 0.016 0.162 0.221 0.045

Killing time t 0.111 0.089 0.022 0.024 0.221 0.196

0 0,2 0,4 0,6 0,8 1 1,2

β

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

P
(β

)

0 0,2 0,4 0,6 0,8 1 1,2

β

-0,12

-0,09

-0,06

-0,03

0

0,03

(a) (b)

FIG. 4. The pressure function (solid line) obtained considering the periodic orbits that include up to six elements in the symbolic
code, see Fig. 1. The dashed line is the first derivative of this pressure function. Panel (a) is the pressure associated with the affine
parameter, and panel (b) the pressure corresponding to the killing time.
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compute the escape rate we consider a circle of control that
covers the two black holes and which is larger than the
outermost periodic orbit fþ�g. Hence, all the photons that
cross out this circle escape toward infinity and do not come
back to the proximity of the black holes.

Let us denote by Nð�Þ, with � the affine parameter � or
the killing time t, the number of photons that remain inside
the circle of control at time � (this includes the photons that
fall into the black holes). This function decreases with �
until it reaches an asymptotic value Nð1Þ, which gives the
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FIG. 5. The evolution of ½Nð�Þ � Nð1Þ�ð½NðtÞ � Nð1Þ�Þ with the affine parameter (killing time) for three ensembles with an
increasing number of photons 5� 105, 5� 106, and 5� 107. The dashed lines give the best linear fitting for the ensemble with the
highest number of photons.
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FIG. 6. In the upper panel the oscillatory component of the function ½Nð�Þ � Nð1Þ� depicted in the left panel of Fig. 5, once the
main exponential decay has been subtracted. In the middle panel its power spectrum, where the vertical dotted lines are the imaginary
parts of the resonances given in the lower panel.
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number of photons that fall into the black holes. The escape
rate � is defined by the exponential decrease to zero of the
function ½Nð�Þ � Nð1Þ� � ½Nð0Þ � Nð1Þ�e��� as �!1.

Figure 5 shows the results obtained from different simu-
lations that include an increasing number of particles in the
statistical ensemble. The larger the number of particles is
in the ensemble, the longer persists the exponential de-
crease with �. From the slope of these curves, we extract a

numerical escape rate �ðnumÞ
� ¼ 0:344 for the affine pa-

rameter and �ðnumÞ
t ¼ 0:083 for the killing time. The agree-

ment with the escape rate obtained from the analysis of the
linear stability of the unstable periodic orbits is excellent,
see Table II. This result confirms our expectation with
respect to the subset of periodic orbits that plays the
main role in the escape dynamics. The small oscillatory
component in the evolution of the function ½Nð�Þ � Nð1Þ�
can be explained by the lower resonances of the system.
This point has been emphasized in [30]. To further illus-
trate this aspect, we have computed the power spectra of

the numerical data ½Nð�Þ � Nð1Þ�e�ðnumÞ
� � for the affine

parameter, and ½NðtÞ � Nð1Þ�e�ðnumÞ
t t for the killing time.

Figures 6 and 7 show a peak structure associated with the
oscillations of both functions once the main exponential
decay has been subtracted. The positions of the peaks is
compared with the locations of the imaginary part of the
lower resonances computed from the zeta function taking
orbits that include up to six elements in the symbolic code.

The resonance distribution explains the peak structure
observed in the power spectrum.
The escape rate of photons depends on the masses of the

black holes and the separation distance between them. The
larger the masses are, the more extensive in space are the
unstable periodic orbits that form part of the fractal repeller
that marks the boundary between dynamical stability and
instability, and therefore the regions where the light rays
fall into the black holes. It could be expected then that the
escape rate of photons decreases as the masses of the black
holes become larger. Figure 8 illustrates this behavior and
shows the decrease of the escape rate as the mass of one of
the black holes is increased. Figure 9 shows the depen-
dence of the escape rate on the separation distance between
the two black holes. In both cases, after an initial transient,
the escape rate decays asymptotically with the distance d.
A similar behavior is observed in other scattering systems,
where the escape rate decays as fðdÞ=d, where fðdÞ a
function determined by the dispersion of the scattering
interaction potential, and 1=d is the contribution of the
time of flight [21,30].
In Fig. 9, we consider the scattering of photons from two

black holes with masses M1 ¼ M2 ¼ M, located at differ-
ent positions (0;�d). From (4), (7), and (8) it can be easily
shown that a system of two black holes with scaled masses
~m1 ¼ ~m2 ¼ M=d located at ð0;�1Þ satisfies identical dy-
namics with respect to an scaled time ~� defined by
d�=d� ¼ d~�=d~�ðd~� ¼ d�=dÞ, where ~� ¼ �=dð� ¼ x; zÞ
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FIG. 7. The same as Fig. 6, but for the function ½NðtÞ � Nð1Þ� depicted in the right panel of Fig. 5.
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are scaled coordinates. Hence, if we denote �d the escape
rate from two identical black holes of mass M located at
(0;�d), and ~� the escape rate from two black holes of the

same mass ~m ¼ M=d located at ð0;�1Þ, it follows that
�d ¼ ~�=d.

VII. ESCAPE DYNAMICS OF PHOTONS FROM A
PERTURBED BLACK HOLE

In this section, we study the escape rate from an extreme
Reissner-Nordström black hole of mass M1 that is slightly
perturbed by the interaction with an extreme Reissner-
Nordström black hole of mass M2 located at distance d.
In polar coordinates, the Hamiltonian can be written as

H ¼ � h

U2
¼ � 1

U2

�
1

2

�
p2
r þ p2

�

r2

�
�U4

2

�
; (39)

with the function U given by

U ¼ 1þM1

r
þ M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ d2 � 2rd sin�
p : (40)

The analysis of the dynamics of this system can be
greatly simplified if we consider the evolution with respect
to a time � defined by the transformation

d

d�
¼ � 1

U2

d

d�
: (41)

Thus, we focus on the equations of motion associated with
the Hamiltonian h

dX

d�
¼ � � @h

@X
X ¼ ðr; �; pr; p�Þ: (42)

In these equations, h can be analyzed as a kinetic energy
term plus an interaction term�U4=2. The functionU4 may
be expressed as an expansion in powers of ðd=rÞ, with the
first two terms given by

U4 ¼
�
1þM1 þM2

r

�
4 þ 4M2d

r2

�
1þM1 þM2

r

�
3
sin�

þO
��

d

r

�
2
�
: (43)

In the limit ðM1 þM2Þ2 � 2M2d, the dynamics of the
system is dominated by the radial term in the expansion
(43), which is perturbed by the remaining angular terms.
Thus, to zero-order approximation the spacetime associ-
ated with the two extreme black holes becomes spherically
symmetric. There exists a single unstable periodic orbit
that is a circle of radius r ¼ M � ðM1 þM2Þ and period
T� ¼ M=2. The time evolution along this orbit is given
by

rsð�Þ ¼ M �sð�Þ ¼ �0 þ 4�

M

prsð�Þ ¼ 0 p�sð�Þ ¼ L;

(44)

with angular momentum L ¼ 4M. The periodic orbits
associated with the affine parameter and the killing time
are also a circle of radius r ¼ M, but with periods T� ¼
2M and Tt ¼ 8M, respectively.
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FIG. 9. Escape rate ��ð�tÞ from two identical black holes
(M1 ¼ M2 ¼ 1) for different separation distance between
them. The black holes are located at zbh ¼ �d. The data were
obtained using ensembles of photons with initial velocity paral-
lel to the x-axis and initial positions uniformly distributed along
the z-axis.
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FIG. 8. The escape rate ��ð�tÞ from the two black holes
located at zbh ¼ �1 for different values of the mass M1 (M2 ¼
1). The data were obtained considering ensembles of photons
with initial velocity parallel to the x-axis and initial positions
uniformly distributed along an interval on the z-axis. The circles
correspond to an ensemble initially distributed in the interval
[1.1, 4] and the crosses to an ensemble initially distributed in the
interval ½�4;�1:1�. The dashed lines are the analytic estimate of

the escape rate from a perturbed black hole, �ð0Þ
� ¼ 1=

ffiffiffi
2

p ðM1 þ
M2Þ and �ð0Þ

t ¼ 1=4
ffiffiffi
2

p ðM1 þM2Þ, see Sec. VII.
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To zero-order approximation the escape rate of photons
from an effective black hole of mass M can be determined
from the analysis of the linear stability of the circular orbit
(44) Xs � ðrs; �s; prs; p�sÞ. This implies the study of the
time evolution of a small perturbation, �X �
ð�r; ��; �pr; �p�Þ, with respect Xs. In terms of the
Hamiltonian h, the linear differential equations that de-

scribe this evolution, dð�XÞ=d� ¼ lð�Þ � �X with lð�Þ ¼
� � @2h

@X2 jXs
, are

d

d�

�r
��
�pr

�p�

0
BBB@

1
CCCA ¼

0 0 1 0
� 8

M2 0 0 1
M2

8
M2 0 0 8

M2

0 0 0 0

0
BBB@

1
CCCA �

�r
��
�pr

�p�

0
BBB@

1
CCCA; (45)

and the fundamental matrix MðXs; �Þ, solution of
dMðXs; �Þ=d� ¼ lð�Þ �MðXs; �Þ with MðXs; 0Þ ¼ 1, is
given by

M ðXs;�Þ¼
Cð�Þ 0 M

2
ffiffi
2

p Sð�Þ ½Cð�Þ�1�
�2

ffiffi
2

p
M Sð�Þ 1 ½1�Cð�Þ� ½ 9

M2�� 2
ffiffi
2

p
M Sð�Þ�

2
ffiffi
2

p
M Sð�Þ 0 Cð�Þ 2

ffiffi
2

p
M Sð�Þ

0 0 0 1

0
BBBB@

1
CCCCA;

(46)

with

Cð�Þ ¼ cosh

�
2

ffiffiffi
2

p
M

�

�
and Sð�Þ ¼ sinh

�
2

ffiffiffi
2

p
M

�

�
: (47)

The stretching factors associated with the circular orbit are
obtained from the eigenvalues of the matrix MðXs; �Þ

f1; 1; e�ð2 ffiffi
2

p
=MÞ�; eð2

ffiffi
2

p
=MÞ�g; (48)

evaluated at one primitive period T�. That is,

� ¼ f1; 1; e�
ffiffi
2

p
; e

ffiffi
2

p
g: (49)

We recall that these stretching factors are invariant under
time transformations, and therefore are identical for the
affine parameter and the killing time. As expected, two of

them are equal to one. The values e�
ffiffi
2

p
 and e

ffiffi
2

p
 are

related to the stable and unstable manifolds of the unique
unstable periodic orbit, respectively. The Lyapunov expo-
nents associated with this orbit are given by

�� ¼ lnj�j
T�

¼
�
0; 0;� 1ffiffiffi

2
p

M
;

1ffiffiffi
2

p
M

�
(50)

in the time evolution dictated by the affine parameter, and

�t ¼ lnj�j
Tt

¼
�
0; 0;� 1

4
ffiffiffi
2

p
M

;
1

4
ffiffiffi
2

p
M

�
(51)

in the evolution with respect to the killing time. Thus, to
zero order the escape rate of photons from the unstable
circular periodic orbit around the effective extreme black
hole of mass M is determined by the leading exponent

�ð0Þ
� ¼ 1=

ffiffiffi
2

p
M and �ð0Þ

t ¼ 1=4
ffiffiffi
2

p
M ¼ �ð0Þ

� =4.
In this system, there is a unique unstable periodic. Since

the dynamics on the repeller is regular, the Kolmogorov-

Sinai entropy is zero, hKS ¼ �� �ð0Þ ¼ 0. Thus, the sys-
tem is hyperbolic but nonchaotic. The Pollicott-Ruelle
resonances 
pr are given by the zeroes of the zeta function

(30) associated with the single unstable periodic orbit

Zð
prÞ ¼
Y1
k¼0

�
1� e�
prT

j�j�k

�
kþ1 ¼ 0; (52)

where T is the period T� or Tt. That is,


ð�Þ
pr ðk; nÞ ¼ � ðkþ 1Þffiffiffi

2
p

M
þ i

n

M
(53)

for the affine parameter and


ðtÞ
pr ðk; nÞ ¼ � ðkþ 1Þ

4
ffiffiffi
2

p
M

þ i
n

4M
(54)

for the killing time, with k ¼ 0, 1, 2, . . . and n ¼
0;�1;�2; . . . The resonances belong to the lower half
plane of the complex plane 
 (Re
pr < 0) and, as occurs

in the two-disk scatterer [21,39], their spectrum forms a
semi-infinity periodic array. Here, the spacing along the

(Re
)-axis is given by the escape rate �ð0Þ
� ¼ 1=

ffiffiffi
2

p
M

ð�ð0Þ
t ¼ 1=4

ffiffiffi
2

p
MÞ, and by the frequency w� ¼ 1=M ðwt ¼

1=4MÞ along the (Im
)-axis. These complex resonances
play an important role in the time evolution of an statistical
ensemble of photons; they determine the different decay
modes and their frequencies in a typical scattering process.
The ensemble dynamics is ruled by the resonances that are
the closest to the imaginary axis ðk ¼ 0Þ. The real part of
these leading resonances controls the exponential decay on
the longest time scale, which defines the escape rate of the
system; and their imaginary parts give the frequencies of
the oscillations that appear superimposed on the gross
exponential decay.
We now study the effect of the first angular term in the

expansion (43) on the zero-order circular orbit (44) asso-
ciated with the leading radial term. We still assume the
limit M2 ¼ ðM1 þM2Þ2 � 2M2d, in which this term can
be treated as an perturbation to the spherically symmetric
motion. To make a first-order perturbative analysis, we
write the U4 function in the interaction term in the form

U4 ¼
�
1þM

r

�
4 þ "

4M2d

r2

�
1þM

r

�
3
sin�; (55)

where we have introduced a perturbative parameter ",
which is set equal to one at the end of the analysis. The
perturbed trajectory can be written as

r1ð�Þ ¼ rsð�Þ þ "rcð�Þ; pr1ð�Þ ¼ prsð�Þ þ "prcð�Þ
�1ð�Þ ¼ �sð�Þ þ "�cð�Þ; p�1ð�Þ ¼ p�sð�Þ þ "p�cð�Þ

(56)

with first-order corrections to the circular orbit (44) that
satisfy the equations
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drc
d�

¼ prc

d�c
d�

¼ 1

M2
ðp�c � 8rcÞ

dprc

d�
¼ � 56M2d

M3
cos

�
4�

M

�
þ 8

M2
ðp�c þ rcÞ

dp�c

d�
¼ � 16M2d

M2
sin

�
4�

M

�
:

(57)

The periodic solution of these equations gives the first-
order perturbed orbit

r1ð�Þ ¼ Mþ dM2

M
cos

�
4�

M

�

�1ð�Þ ¼ �0 þ 4

M
�� dM2

M2
sin

�
4�

M

�

pr1ð�Þ ¼ � 4dM2

M2
sin

�
4�

M

�

p�1ð�Þ ¼ 4Mþ 4dM2

M
cos

�
4�

M

�
:

(58)

This is a quasicircular orbit that nearly reproduces the
periodic orbit fþ�g in two black-hole systems in which
ðM1 þM2Þ> d, and the periodic orbit f��gðfþþgÞ in
systems where ðM1 þM2Þ< d, see Fig. 10. The more
complex periodic orbits (longer symbolic coding) are be-
yond the scope of our perturbative analysis. However, in
the limit ðM1 þM2Þ2 � 2M2d these are highly unstable

periodic orbits that play a secondary role in the escape rate
of photons from the black holes. Here, the escape rate is
controlled by the quasicircular periodic orbit, fþ�g or
f��gðfþþgÞ, which results from the slight deformation
of the circular orbit of radiusM. Hence, the analysis of the
linear stability of the zero- and first-order periodic orbits
(44) and (58) should provide a good estimate of the escape
rate of photons from a perturbed black hole. Indeed, as the
results in Table III indicate, both the analytical escape rate

�ð0Þ
� ð�ð0Þ

t Þ derived from the analysis of the linear stability of
the zero-order circular orbit (44) and the escape rate

�ð1Þ
� ð�ð1Þ

t Þ obtained from the leading eigenvalue of the
fundamental matrix associated with the first-order quasi-
circular orbit (58) are very close to the escape rate

�ðnumÞ
� ð�ðnumÞ

t Þ calculated from the numerical simulations
that consider an statistical ensemble of photons, see
Fig. 11. As Fig. 8 shows, the zero-order analytic estimate

�ð0Þ
� ð�ð0Þ

t Þ even provides an approximated value for the
escape rate from a system of two black holes with similar
masses.
In the numerical simulations with a statistical ensemble

of photons( see Fig. 11, the escape from the perturbed
black hole presents a smooth oscillation superposed on
the gross exponential decay determined by the escape

rate �ðnumÞ
� ð�ðnumÞ

t Þ. The zero-order Pollicott-Ruelle reso-
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FIG. 10. Some of the periodic orbits in two systems of a black hole of massM1 perturbed by the interaction with a black hole of mass
M2 located at distance d. The solid lines give the periodic orbits fþþg, f��g, fþ�g, fþ �þþg, and fþ 
 �
g, and the dashed line is
the first-order periodic orbit (58). The system (a) corresponds to (M1 ¼ 1, M2 ¼ 0:01, d ¼ 2), and (b) to (M1 ¼ 7,M2 ¼ 0:1, d ¼ 2).
In both systems, the main black hole of mass M1 is located at (0, 0) and the black hole of mass M2 at ð0; dÞ.

TABLE III. Escape rate values for two systems of perturbed black holes. �ð0Þ
� ð�ð0Þ

t Þ is the escape rate derived from the zero-order

circular orbit (44), �ð1Þ
� ð�ð1Þ

t Þ is the escape rate obtained from the analysis of linear stability of the first-order orbit (58), and

�ðnumÞ
� ð�ðnumÞ

t Þ is the escape rate calculated from the numerical simulations that consider a statistical ensemble of photons.

System �ð0Þ
� �ð1Þ

� �ðnumÞ
� �ð0Þ

t �ð1Þ
t �ðnumÞ

t

ðM1 ¼ 1;M2 ¼ 0:01; d ¼ 2Þ 0.70 011 0.69 559 0.69 258 0.17 503 0.17 390 0.17 624

ðM1 ¼ 7;M2 ¼ 0:1; d ¼ 2Þ 0.09 959 0.09 957 0.09 901 0.02 490 0.0 2489 0.02 436
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nances (53) and (54) account for this behavior of the decay
curves; the exponential decay determined by the escape

rate �� ’ �ð0Þ
� ð�t ’ �ð0Þ

t Þ is given by the real part of the

leading resonances k ¼ 0, and the frequency of the oscil-
lation w� ’ 1=Mðwt ’ 1=4MÞ is given by the imaginary

part of the leading resonance given by n ¼ 1ðk ¼ 0Þ. This
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FIG. 11. The evolution of ½Nð�Þ � Nð1Þ�ð½NðtÞ � Nð1Þ�Þ with the affine parameter (killing time) for two statistical ensembles in
the perturbed systems of Fig. 10. Panels (a) and (c) correspond to the system (a) in Fig. 10, and panels (b) and (d) to the system (b) in
Fig. 10. The solid line gives the escape from a circle of control centered in between the two black holes, at ð0; d=2Þ, and the dashed
lines the escape from a circle of control centered on the main black hole, at (0, 0). See Sec. VII for comments.
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FIG. 12. The Fourier transform of the four signals in Fig. 11. The dashed lines localize the frequency of the main oscillation in the
escape rate predicted by the leading zero-order Pollicott-Ruelle resonances, w� ’ 1=Mðwt ’ 1=4MÞ.
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is illustrated in Fig. 12, which displays the Fourier spectra
of the signals in Fig. 11. It clearly shows that the most
intense peaks in the spectra, associated with the frequency
of the main oscillation in the escape rate, are localized
pretty close to these frequencies predicted by the leading
zero-order Pollicott-Ruelle resonances. These peaks corre-
spond to the frequency of the leading orbits, the orbit
f��gðfþþgÞ in case A and the orbit fþ�g in case B, see
Fig. 10. This is another indication of the leading role of the
quasicircular orbit that results from the slight deformation
of the circular orbit of radius r ¼ M in the escape dynam-
ics of photons.

VIII. CONCLUSIONS

We have studied the scattering of photons in the
Majumdar-Papapetrou static spacetime of two extreme
Reissner-Nordström black holes held fixed in space due
to the balance between the gravitational attraction of their
masses and the electrostatic repulsion of their charges. We
have identified the set of unstable periodic orbits that form
part of the fractal repeller, which fully characterizes the
chaotic escape dynamics of the photons from the two black
holes. These orbits were classified according to a symbolic
coding.

The linear stability of the dynamics, in particular, the
unstable periodic orbits, was analyzed using their stretch-
ing factors, which are given by the eigenvalues of the
fundamental matrix integrated up to one primitive period
of the orbits. With the primitive periods and stretching
factors of the periodic orbits, we determined the topologi-
cal pressure, and from this function and its first derivative
the main quantities of chaos that characterize the fractal
repeller, in particular, the escape rate, which was calcu-
lated using the trace formula for hyperbolic flows of
Cvitanovic and Eckhardt. This escape rate derived from
the periodic orbit theory was in good agreement with the
value obtained from numerical simulations that analyze the
escape dynamics of an statistical ensemble of photons.

From the study of the linear stability of the dynamics we
also identified the periodic orbit that plays the leading role
in the escape of photons from the two black-hole configu-
ration. In systems with two identical extreme Reissner-
Nordström black holes the escape is mainly controlled by
the outermost periodic orbit fþ�g that encircles the two
black holes. In systems where a main black hole of mass
M1 is perturbed by the weak interaction with a black hole
of mass M2, the escape of photons is dominated by the
quasicircular orbit that results from the slight deformation
of the circular orbit of radius r ¼ M ¼ ðM1 þM2Þ.
Depending on the separation distance between the two
black holes this leading orbit can cover the whole system,
and corresponds to the periodic orbit fþ�g, or only en-
circles the main black hole, and is given by the periodic
orbit fþþgðf��gÞ.
In systems of a perturbed black hole, the analysis of the

linear stability of the unique zero-order periodic orbit in a
perturbative treatment provides an analytic estimate of the

escape rate �ð0Þ
� ¼ 1=

ffiffiffi
2

p
Mð�ð0Þ

t ¼ 1=4
ffiffiffi
2

p
MÞ, which is in

good agreement with the numerical value derived from the
analysis of the linear stability of the first-order perturbative
periodic orbit, and also with the escape rate obtained from
the time evolution of a statistical ensemble of photons. This
analytical value even provides an approximated value for
the escape rate of photons from a system of two extreme
Reissner-Nordström black holes with similar masses and
therefore a way to estimate the mass of a black hole from
the escape rate of photons.

ACKNOWLEDGMENTS

D. Alonso thanks C .P. Dettmann for fruitful discussions.
We thank G. Contopoulos and N. J. Cornish for pointing
out important references. Financial support has been pro-
vided by Ministerio de Educación y Ciencia (FIS2004-
05687, FIS2005-02886, FIS2007-64018) and Gobierno
de Canarias (PI2004/025).

[1] See for example D. Hobill, A. Burd, and A. Coley,
Deterministic Chaos in General Relativity (Plenum
Press, New York, 1994), and references therein.

[2] S. Chandrasekhar, Proc. R. Soc. A 421, 227 (1989).
[3] G. Contopoulos, Proc. R. Soc. A 431, 183 (1990); 435,

551 (1991).
[4] C. P. Dettmann, N. E. Frankel, and N. J. Cornish, Phys.

Rev. D 50, R618 (1994); Fractals 3, 161 (1995).
[5] N. J. Cornish and N. E. Frankel, Phys. Rev. D 56, 1903

(1997); R. Moeckel, Commun. Math. Phys. 150, 415
(1992); W.M. Vieira and P. S. Letelier, Phys. Rev. Lett.
76, 1409 (1996); J. Levin, Phys. Rev. D 60, 064015
(1999); 67, 044013 (2003).

[6] N. J. Cornish and J. Levin, Classical Quantum Gravity 20,
1649 (2003).

[7] L. Bombelli and E. Calzetta, Classical Quantum Gravity 9,
2573 (1992); P. S. Letelier and W.M. Vieira, Classical
Quantum Gravity 14, 1249 (1997); N. J. Cornish, Phys.
Rev. D 64, 084011 (2001); K. Kiuchi and K. Maeda, Phys.
Rev. D 70, 064036 (2004).

[8] S. Suzuki and K. Maeda, Phys. Rev. D 55, 4848 (1997);
61, 024005 (1999); J. Levin, Phys. Rev. Lett. 84, 3515
(2000); A. Gopakumar and C. Königsdörffer, Phys. Rev. D
72, 121501(R) (2005).

[9] V. Karas and D. Vokrouhlicky, Gen. Relativ. Gravit. 24,
729 (1992); M. Santoprete and G. Cicogna, Gen. Relativ.
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(1990).
[35] S. Smale, The Mathematics of Time (Springer-Verlag, New

York, 1980).
[36] D. Ruelle, Thermodynamic Formalism (Addison-Wesley,

Reading, Massachusetts, 1978).
[37] J. P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617

(1985); H. Kantz and P. Grassberger, Physica D
(Amsterdam) 17, 75 (1985).

[38] I. Burghardt and P. Gaspard, J. Chem. Phys. 100, 6395
(1994).

[39] P. Gaspard, in Dynamics of Dissipation, edited by P.
Garbaczewski and R. Olkiewicz, Lectures Notes in
Physics Vol. 597 (Springer-Verlag, Berlin, 2002), p. 111.

ESCAPE OF PHOTONS FROM TWO FIXED EXTREME . . . PHYSICAL REVIEW D 78, 104024 (2008)

104024-17


