Statistical Physics II. © Daniel Alonso. IUdEA Physical Units

- To compute in a fast way quantities that involve physical constants you can use the package that *Mathematica* has in it.
- We load the pachage

<< PhysicalConstants`

• Now we have some constants to use (look at the help menu for more). Examples are:

ProtonMass

 1.67262×10^{-27} Kilogram

ElectronMass

 9.10938×10^{-31} Kilogram

ElectronCharge

 $\texttt{1.60218} \times \texttt{10}^{-\texttt{19}} \; \texttt{Coulomb}$

SolarRadius

 6.9599×10^8 Meter

SolarLuminosity

 3.84×10^{26} Watt

CosmicBackgroundTemperature

2.726 Kelvin

StefanConstant

 5.6704×10^{-8} Watt

 $Kelvin^4 Meter^2$

EarthMass

 5.9742×10^{24} Kilogram

EarthRadius
6378140 Meter
You can use them to compute. For instance the mean Earth density
EarthDen = EarthMass $\left(\frac{4\pi}{3} (EarthRadius)^3 \right)$
5496.79 Kilogram Meter ³

 Another thing you can do is to change the units system. For instance you have the Earth density in the MKS system and you want it in the CGS system.

CGS[EarthDen]	
5.49679 Gram Centimeter ³	

• Or

<< Units`
$Convert \Big[EarthDen, \frac{Gram}{Centimeter^3} \Big]$
5.49679 Gram Centimeter ³
$Convert \left[2.1 \frac{KiloMeter}{Hour}, \frac{Inch}{Minute} \right]$
Minute

With these packages; PhysicalConstants and Units you can work in your computations in a very efficient way. In fact there are more things available. As example (you can explore for more) is the ElementData function,

```
ElementData["H", "AtomicWeight"]
ElementData[1, "AtomicWeight", "Units"] (* gives the units *)
ElementData[1, "MolarVolume"]
```

1.00794

AtomicMassUnits

0.0112